基于RBF神经网络的破障武器内模PID控制  被引量:3

IMC-PID Control of Obstacle-destroying Weapons Based on RBF Neural Network

在线阅读下载全文

作  者:陶征勇 童仲志[1] 侯远龙[1] 黎青鑫 时尚 Tao Zhengyong;Tong Zhongzhi;Hou Yuanlong;Li Qingxin;Shi Shang(College of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing Jiangsu 210094,China)

机构地区:[1]南京理工大学机械工程学院,江苏南京210094

出  处:《电气自动化》2020年第5期87-89,95,共4页Electrical Automation

摘  要:针对破障武器伺服系统中存在的非线性、参数时变和不确定性等因素,提出了一种基于RBF神经网络的内模PID控制策略。通过RBF神经网络对内模PID控制器的唯一参数进行调节,同时对RBF神经网络采用LM算法进行训练。仿真结果表明,控制方法具有良好的系统动态品质、鲁棒性和抗干扰能力,能够有效地加快破障武器的调炮速度以及提高破障武器的破障精度。In view of such factors as nonlinearity,parameter time-varying and uncertainty existing in the servo system of obstacle-destroying weapons,an IMC-PID control strategy based on RBF neural network was proposed.According to this method,the sole parameter of the IMC-PID controller was adjusted through RBF neural network,and the RBF neural network was trained with LM algorithm.Simulation results showed that the proposed control method had good system dynamic quality,robustness and anti-interference ability,and could effectively accelerate gun rotation of obstacle-destroying weapons and improve their accuracy in obstacle destroying.

关 键 词:破障武器 非线性 时变 RBF神经网络 内模PID LM算法 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象