基于差异代谢网络的泛癌代谢分析  

Pan-cancer analysis based on differential metabolic network

在线阅读下载全文

作  者:熊宇峰 郑浩然[1] XIONG Yufeng;ZHENG Haoran(Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027)

机构地区:[1]中国科学技术大学计算机科学与技术学院,合肥230027

出  处:《北京生物医学工程》2020年第5期506-512,共7页Beijing Biomedical Engineering

基  金:国家重点基础研究发展计划(2017YFA0505502);安徽省自然科学基金(1508085MF128)资助。

摘  要:目的基因组规模代谢网络模型(genome-scale metabolic model,GEM)是当前癌症代谢研究常用的一种分析工具,高质量的癌症代谢网络有助于人们了解癌症内部的代谢特征。泛癌代谢分析需要为多种癌症构造代谢网络模型,然而传统的直接基于癌症基因表达或蛋白质数据进行的网络重构方法,无法避免引入癌症所在组织的代谢特征,从而影响探寻疾病本身的代谢特点。为了削弱组织代谢特征对研究的影响,更加准确地提取癌症相对正常组织细胞在代谢层面上发生的变化,提出一种基于差异代谢网络的泛癌代谢分析方法。方法以癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库中17种癌症作为分析对象,通过分析癌症及癌旁组织的基因表达数据,采用基因芯片线性模型(linear models for microarray analysis,Limma)工具包分别提取这17种癌症的差异表达基因,并将人类全基因组规模代谢网络Recon3D作为背景网络,结合代谢网络重构算法FASTCORE为每种癌症构建差异代谢网络。最后联合多种癌症网络利用流量平衡分析(flux balance analysis,FBA)方法进行基因敲除以及毒性测试,分析癌症代谢共性,发现潜在药物治疗靶点。结果得到了每种癌症的差异表达基因、差异代谢网络模型,以及潜在的药物靶点,通过联合所有癌症进行分析,最后得到了7个潜在的泛癌药物靶点,其中包括CRLS1、CTH、PTDSS1、SLC6A14、SGMS1、PKM以及PLD2。7个药物靶标中已经有5个用于不同的癌症治疗策略中,而其余结果代表了潜在的药物靶点。结论本文提出的差异代谢网络模型可以有效削弱组织代谢特征对癌症本身特征的干扰,有助于泛癌代谢分析。Objective Genome-scale metabolic model(GEM)is currently a commonly used tools for cancer metabolism research.High-quality cancer metabolism models can help us understand the metabolic characteristics of cancer.In pan-cancer analysis we need to reconstructed connected genome-scale metabolic models for each cancer.However,the traditional way based on gene expression or protein data to construct metabolic network lead to the metabolic characteristics of cancer tissue,which influence understanding the metabolic characteristics of disease.In order to eliminate the influence of tissue metabolism on the research and accurately extract the metabolic changes of cancer relative to normal tissues,we propose a pan-cancer metabolic analysis method based on differential metabolic networks.Methods Taking 17 cancers in The Cancer Genome Atlas(TCGA)as the analysis objects,we used the linear models for microarray analysis(Limma)toolkit to determine genes that were differentially expressed between cancer and benign tissue.Then we combined differential genes,reference generic human GEM named Recon3D and metabolic network reconstruction algorithm FASTCORE to build differential metabolic networks for each cancer.Flux balance analysis(FBA)was used for metabolic flux analysis and gene knockout on a variety of cancer networks to study the common features of cancer metabolism and potential drug targets.Results In the experiments,we obtained differentially expressed genes,differential metabolic network models,and potential drug targets for each type of cancer.Through the analysis of all cancers,seven potential pan-cancer drug targets were obtained,including CRLS1,CTH,PTDSS1,SLC6A14,SGMS1,PKM,and PLD2.Five of the seven drug targets had already been used in different cancer treatment strategies,while the remaining drug targets represent new potential drugs.Conclusions The differential metabolic network model proposed in this paper can effectively eliminate the differences between different tissues,which is helpful to studying the metabolic c

关 键 词:基因表达数据 代谢网络 基因敲除 药物靶标 泛癌 

分 类 号:R318.04[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象