检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋昌熙 郑春花[2] 车硕源 SONG Changhee;ZHENG Chunhua;CHA Suk Won(Department of Mechanical Engineering,Seoul National University,Seoul 151742,South Korea;Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China)
机构地区:[1]首尔大学机械工程系,首尔151742 [2]中国科学院深圳先进技术研究院,深圳518055
出 处:《集成技术》2020年第5期27-33,共7页Journal of Integration Technology
基 金:深圳市小孔雀项目(KQJSCX20180330170047681);深圳无人驾驶感知决策与执行技术工程实验室项目(Y7D004);深圳电动汽车动力平台与安全技术重点实验室项目。
摘 要:固体氧化物燃料电池(Solid-Oxide Fuel Cell,SOFC)因其能量转换效率高而备受关注,但其相关技术非常复杂,技术成熟度比质子交换膜燃料电池、直接甲醇燃料电池等其他类型的燃料电池低。SOFC的微观结构是影响其性能的因素之一,为加速SOFC的商业化应用,需要对其复杂微观结构进行有效优化。同时,SOFC性能测试实验耗时长、费用高,而高可靠性的SOFC计算机模型可用来缩短SOFC微观结构优化时间和降低研发成本。该研究根据阳极支撑SOFC结构变化对应的性能实验数据,开发了一种基于人工神经网络的、根据结构特性来预测其性能的SOFC计算机模型。实验过程利用部分数据对该人工神经网络进行训练,并利用另一部分数据对其进行验证。结果显示,所开发的SOFC模型能够准确地根据微观结构的变化呈现其性能变化,适合用于SOFC微观结构的优化。Solid oxide fuel cells(SOFCs) have gained lots of attentions owing to their high energy conversion efficiency, however, because of the complex technology, their application is not mature as compared with other types of fuel cells such as proton-exchange membrane fuel cells and direct methanol fuel cells. The micro-structure is one of important factors on the SOFC performance, therefore, in order to expedite the commercialization of SOFCs, it is crucial to develop an effective method to optimize the complicated microstructure of SOFCs. The experiment of the SOFC performance test is time-consuming and cost-ineffective, thus it is necessary to develop an SOFC simulation model with high reliability to save the time and cost of the micro-structure optimization. This research proposes an artificial neural network(ANN)-based SOFC simulation model according to the experimental data of an anode-supported SOFC performance, in which the polarization characteristics of SOFCs are estimated from their structural characteristics. After training the ANN based on a part of the experimental data, the rest part of data are used to evaluate the effectiveness of the proposed SOFC model. Results show that the proposed SOFC simulation model accurately presents the polarization characteristics of SOFCs according to the structural characteristics, and this indicates that the model is suitable for the micro-structure optimization for SOFCs.
关 键 词:固体氧化物燃料电池 性能预测模型 人工神经网络 微观结构
分 类 号:TG156[金属学及工艺—热处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3