检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨海清[1] 石珏 YANG Haiqing;SHI Jue(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
机构地区:[1]浙江工业大学信息工程学院,浙江杭州310023
出 处:《传感器与微系统》2020年第10期132-134,共3页Transducer and Microsystem Technologies
摘 要:针对基于可穿戴设备传感器、视频分析和环境传感器的跌倒检测方法储存资源受限、计算资源消耗大和精度低的缺点,提出了一种基于姿态估计的静态图像跌倒检测方法。利用卷积神经网络提取人体的姿态估计,通过人体的姿态估计判断出人体是否为跌倒状态,利用分类网络进行跌倒姿态的验证。实验结果表明,基于姿态估计的静态图像跌倒检测方法识别率高、计算资源消耗低、速度快。Aiming at the problem that fall detection method of wearable device sensor,video analysis and environmental sensor has the disadvantages of limited storage resources,high computational resource consumption and low precision,a fall detection method in still image based on pose estimation is proposed.The method uses the convolutional neural network(CNN)to extract the pose estimation of the human body,and judges whether the people is a fall state through the pose estimation of the human body,and uses the classification network to verify the fall posture.The experimental results show that the fall detection method in still image based on pose estimation has high recognition rate,low computational resource consumption and fast speed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200