检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘杰[1] LIU Jie(Chongqing Vocational Institute of Engineering,School of Intelligent Manufacturing and Transportation,Chongqing 402260,China)
机构地区:[1]重庆工程职业技术学院,智能制造与交通学院,重庆402260
出 处:《重庆交通大学学报(自然科学版)》2020年第10期31-36,共6页Journal of Chongqing Jiaotong University(Natural Science)
基 金:国家自然科学基金项目(61703351);五邑大学校内科研项目(2018AL033)。
摘 要:针对轨道交通司机驾驶水平定量化评价问题,笔者在数据提取、数据降噪和数据降维的基础上,构建了基于支持向量机的轨道司机驾驶水平评价模型方法对该问题进行了研究。研究结果表明:选用高斯核函数的SVM模型在准确率和稳定性上要优于普通、线性和多项式SVM模型,和人工评价结果比较其余弦相似度均高于0.98,模型评价结果的有效性。Aiming at the quantitative evaluation of the driving level of rail transit drivers,based on data extraction,data denoising and data dimensionality reduction,an evaluation model of rail drivers' driving level based on support vector machine was established and studied.The research results show that the accuracy and stability of SVM model using Gaussian kernel function is better than that of ordinary,linear and polynomial SVM models.Compared with the manual evaluation results,the cosine similarity of SVM model with Gaussian kernel function is higher than 0.98,which indicates the validity of evaluation results of the proposed model.
关 键 词:交通工程 司机驾驶水平评价 行车数据 小波降噪 主成分分析 支持向量机 余弦相似度
分 类 号:U491.1[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.235.215