基于BP神经网络预测儿童甲状腺疾病的模型研究  被引量:4

Prediction model of pediatric thyroid disease based on back-propagation neural network

在线阅读下载全文

作  者:田娟 朱姝婧[2] 陆强 李坤 张西学 TIAN Juan;ZHU Shujing;LU Qiang;LI Kun;ZHANG Xixue(School of Medical Information Engineering,Shandong First Medical University,Tai'an 271016,China;Department of Laboratory,Tai'an Center for Diseases Prevention and Control,Tai'an 271016,China)

机构地区:[1]山东第一医科大学医学信息工程学院,山东泰安271016 [2]泰安市疾病预防控制中心检验科,山东泰安271016

出  处:《中国医学物理学杂志》2020年第10期1340-1344,共5页Chinese Journal of Medical Physics

基  金:泰安市科技发展计划(201730338)。

摘  要:目的:构建儿童甲状腺疾病的预测模型。方法:根据某市疾病预防控制中心2013年~2016年采集的1400名8~11岁儿童的体检数据及临床初步诊断结果作为研究数据,随机抽取其中的1000名儿童作为训练样本,剩余的400名儿童作为测试样本,利用MATLAB R2018b软件编程实现三层BP神经网络模型。结果:当选择log&log组合作为隐含层和输出层的传递函数,隐含层节点数目选择8时,模型的分类正确率达到91.43%。结论:BP神经网络应用于儿童甲状腺疾病的预测,可以为疾病的防治工作提供理论依据。Objective To construct a prediction model of thyroid disease in pediatric patients.Methods The physical examination data and preliminary clinical diagnoses of 1400 children aged 8-11 years were collected from 2013 to 2016 in a Center for Disease Prevention and Control.One thousand out of 1400 children were randomly selected as training samples,and the remaining 400 were used as test samples.A three-layer back-propagation neural network model was constructed by MATLAB R2018b software.Results The classification accuracy of the model reached 91.43%when the combination of log&log was selected as the transfer function of the hidden layer and the output layer,with 8 nodes in the hidden layer.Conclusion Back-propagation neural network can be applied to the prediction of thyroid diseases in children,and provide a theoretical basis for the prevention and treatment of diseases.

关 键 词:儿童甲状腺疾病 BP神经网络 疾病预测 分类正确率 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象