基于深度学习的岩石铸体薄片图像孔隙自动提取  被引量:18

Automatic Extraction of Pores in Thin Slice Images of Rock Castings Based on Deep Learning

在线阅读下载全文

作  者:蔡宇恒 滕奇志[1] 涂秉宇 CAI Yu-heng;TENG Qi-zhi;TU Bing-yu(Institute of Image Information,College of Electronics and Information Engineering Sichuan University,Chengdu 610065,China)

机构地区:[1]四川大学电子信息学院图像信息研究所,成都610065

出  处:《科学技术与工程》2020年第28期11685-11692,共8页Science Technology and Engineering

基  金:国家自然科学基金(61372174)。

摘  要:岩石铸体薄片图像中孔隙区域的准确提取是分析评估工作的前提。但目前传统的孔隙提取方法主要是通过颜色特征进行阈值分割,精度较低,需加入大量的人工交互操作才能提高精度。因此提出一种新的基于深度学习的孔隙区域自动提取算法,该算法基于U-net搭建网络基本框架。首先,网络在编码阶段加入残差块来提升网络的深度。其次,针对残差块进行优化并引入空洞卷积,提取更全局、语义层次更深的特征。最后,在解码阶段加入网络模块间的短连接,提出新的融合特征方法,更好地将浅层特征与深层语义特征相结合,得到更加精细的孔隙区域。实验结果表明,该方法优于传统的孔隙提取方法,具有更高的分割精度且无需人工操作,与主流卷积神经网络相比也具有更高的精度和平均交并比。Accurate extraction of the pore region in the image of rock casting thin section is the premise of analysis and evaluation.However,traditional methods of pore extraction mainly use color features for threshold segmentation,which requires a lot of manual interaction to improve the accuracy.Therefore,a new deep learning-based automatic pore region extraction algorithm was proposed.Based on U-net,it meant to build a basic network framework.Firstly,the residual blocks was added to the network during the encoding phase to improve the depth of the network.Secondly,the residual block was optimized and the hole convolution was introduced to extract more global and deeper semantic features.Finally,a short connection between network modules was added at the decoding stage,and a new fused feature method was proposed to better combine shallow features with deep semantic features to obtain a finer pore area.The experimental results show that the method is superior to the traditional pore extraction method with higher segmentation accuracy.And it does not require manual operation.Meanwhile,it has higher accuracy and average intersection ratio than mainstream convolutional neural networks.

关 键 词:深度学习 铸体图像 孔隙提取 图像分割 卷积神经网络 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象