检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:詹宏锋[1] Zhan Hongfeng(Guangdong Polytechnic of Science and Technology,Guangzhou 510640,Guangdong,China)
出 处:《计算机应用与软件》2020年第11期146-153,共8页Computer Applications and Software
摘 要:提出一种基于分数阶傅里叶变换(Fractional Fourier Transform,FRFT)和相关向量机(Relevance Vector Machine,RVM)的运动想象脑电信号分类方法。利用不同阶次的FRFT将脑电信号转换至分数域,在分数域提取44维分数阶特征,充分扩展特征域的同时尽可能多地从不同维度提取信号中的有用信息。利用RVM分类器进行特征选择和分类识别,在自动确定最优分类特征的同时获得理想的分类结果。基于国际BCI竞赛2003中Graz数据的实验结果表明,该方法可以获得97.51%的正确识别率,并且具有较强的泛化能力和噪声稳健性。This paper proposes a classification method of motor imaginary EEG signals based on fractional Fourier transform(FRFT)and relevance vector machine(RVM).Different levels of FRFT were used to convert the EEG signals to the fractional domain,and the 44-dimensional fractional order features were extracted in the fractional domain,fully expanding the characteristic domain while extracting as much useful information from different dimensions as possible.The RVM classifier was used for feature selection and classification recognition,and the ideal classification results could be obtained while the optimal classification feature was automatically determined.Experimental results based on Graz data of BCI in 2003 show that our method can achieve 97.51%correct recognition rate,and has strong generalization ability and noise robustness.
关 键 词:脑电信号分类 特征提取 分数阶傅里叶变换 相关向量机
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147