Armendariz半环的一些性质  

Properties of Armendariz Semi-ring

在线阅读下载全文

作  者:卓远帆 谷勤勤 ZHUO Yuan-fan;GU Qin-qin(School of Mathematics and Physics,Anhui University of Technology,Maanshan 243032,China)

机构地区:[1]安徽工业大学数理科学与工程学院,安徽马鞍山243032

出  处:《南通职业大学学报》2020年第3期62-66,共5页Journal of Nantong Vocational University

摘  要:在Armendariz环概念的基础上,定义了Armendariz半环,并将Anderson和Camillo提出的Armendariz环的一些性质推广到半环上;证明了在Armendariz半环R中,当n个一元多项式乘积为零时,其对应的系数乘积为零;其次,证明了R是Armendariz半环当且仅当R[x]是Armendariz半环;同时,给出了n个多元多项式乘积为零,其对应的系数乘积为零的等价条件;进一步证明了,当n≥2时,若R是约化半环,则R[x](x^n)为Armendariz半环。Based on the concept of Armendariz rings,Armendariz semiring is defined,and some properties of Armendariz ring proposed by Anderson and Camillo are extended to semi-ring.It is proved that in the Armendariz-R,when the product of n unary polynomials is zero,their corresponding coefficient product is zero.Secondly,it is proved that R is an Armendariz semi-ring if and only if R[x]is an Armendariz semi-ring.At the same time,the equivalent condition is given that the product of n multivariate polynomials is zero and the product of their corresponding coefficients is zero.It is further proved that when n≥2,if R is a reduced semi-ring,then R[x](x^n)is an Armendariz semi-ring.

关 键 词:多项式半环 零因子 交换半环 Armendariz半环 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象