基于二阶格式的有限体积保正格式  被引量:5

A Positivity-preserving Finite Volume Scheme Based on Second-order Scheme

在线阅读下载全文

作  者:赵菲 盛志强[2] 袁光伟[2] ZHAO Fei;SHENG Zhiqiang;YUAN Guangwei(College of Science,North China Univevsity of Technology,Beijing 100144,China;Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China)

机构地区:[1]北方工业大学理学院,北京100144 [2]北京应用物理与计算数学研究所计算物理实验室,北京100088

出  处:《计算物理》2020年第4期379-392,共14页Chinese Journal of Computational Physics

基  金:国家自然科学基金(11971069,11571048,11871112),NSAF(U1630249);科学挑战专题(TZ2016002)资助项目。

摘  要:从二阶线性格式出发,通过对法向通量进行重构,得到非线性两点通量,获得四面体网格上的单元中心型有限体积保正格式.该格式适用于求解间断和各向异性扩散系数问题.无需假设辅助未知量非负,避免了辅助未知量计算出负时"遇负置零"的人为处理方式;并且证明该格式在每个非线性Picard迭代步具有强保正性,即当源项和边界条件非负时,线性化格式的非平凡解是严格大于零的.数值算例验证该格式具有二阶收敛性且是保正的.Based on a second-order accurate linear scheme,a normal flux is reconstructed to obtain a nonlinear finite volume scheme with a two-point flux discrete stencil on tetrahedral meshes.It is suitable for discontinuous and anisotropic diffusion coefficient problems,and can be generalized to general polyhedral meshes.It is unnecessary to assume that auxiliary unknowns are non-negative,and avoids artificial processing of"setting negative to be zero"in calculating auxiliary unknowns.Moreover,it is proved that the linearized scheme at each nonlinear iteration step satisfies strong positivity-preserving,i.e.,as the source term and boundary condition are non-negative,non-zero solution of the scheme is strictly greater than zero.Numerical tests verify that the scheme has second-order accuracy and is strong positivity-preserving.

关 键 词:扩散方程 四面体网格 有限体积格式 强保正性 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象