检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王浩 王建春[1] 李凤菊[1] 钱春阳[1] 张雪飞[1] 徐义鑫[1] 吕雄杰[1] 杜彦芳[1] 宋斌[1] WANG Hao;WANG Jianchun;LI Fengju;QIAN Chunyang;ZHANG Xuefei;XU Yixin;LV Xiongjie;DU Yanfang;SONG Bin(Information Institute,Tianjin Academy of Agricultural Sciences,Tianjin 300192,China)
机构地区:[1]天津市农业科学院信息研究所,天津300192
出 处:《贵州农业科学》2020年第10期58-63,共6页Guizhou Agricultural Sciences
基 金:天津市科技局天津市科技计划项目“黄瓜果实表型商品性决策系统研发及新品种辅助选择研究”(18ZXZNC00170);天津市农业科学院青年科研人员创新研究与试验项目“基于深度学习的复杂场景黄瓜智能采摘视觉系统研究”(201916)。
摘 要:为建立准确高效的黄瓜病斑叶片的检测与识别算法提供参考,针对黄瓜叶片常见病斑检测与识别时存在的环境适应性差、识别精度低等问题,提出基于改进的SVM(支持向量机)和CNN(卷积神经网络)组合模型的黄瓜病斑叶片检测与识别算法。依据黄瓜设施场景特征,首先对病斑图像进行色彩增强,通过直方图均衡化对图像进行再处理,利用优化的HOG+SVM分类器对黄瓜叶片进行提取;通过稀疏滤波器及增加偏置对CNN算法进行改进,识别出叶片的病斑类别。结果表明:在黄瓜设施场景下,改进SVM和CNN组合模型的黄瓜病斑叶片检测与识别算法对叶片提取的查准率及差全率分别达87.21%和88.77%,对病斑的整体识别精准率为91.9%。算法实时性强,具有实际推广应用前景。In order to provide references for establishing an accurate and efficient detection and recognition algorithm for cucumber diseased leaves,aiming at the problems of poor environmental adaptability and low recognition accuracy in the detection and recognition of common disease spots on cucumber leaves,an algorithm for detection and recognition of disease spots on cucumber leaves based on the combination model of SVM and CNN was proposed.According to the scene characteristics of cucumber facilities,the color of the lesion image was enhanced firstly,the image was reprocessed by histogram equalization,and the leaves of cucumber were extracted by HOG+SVM classifier;the CNN algorithm was improved by sparse filter and adding bias to identify the lesion types of leaves.The experimental results showed that in the cucumber facility scenario,the accuracy and total difference of leaf extraction could reach 87.21%and 88.77%respectively,and the accuracy of the whole identification of disease spots was91.9%.At the same time,the algorithm had strong real-time performance and had practical application prospects.
关 键 词:黄瓜 病斑检测 支持向量机 卷积神经网络 改进算法
分 类 号:S126[农业科学—农业基础科学] S432
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.201.186