检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李天琪 谭海 戴激光[1] 杜阳 王杨 Li Tianqi;Tan Hai;Dai Jiguang;Du Yang;Wang Yang(School of Geomatics,Liaoning Technical University,Fuxin,Liaoning 123000,China;Land Satellite Remote Sensing Application Center,Ministry of Natural Resources,Beijing 100048,China)
机构地区:[1]辽宁工程技术大学测绘与地理科学学院,辽宁阜新123000 [2]自然资源部国土卫星遥感应用中心,北京100048
出 处:《激光与光电子学进展》2020年第20期178-185,共8页Laser & Optoelectronics Progress
摘 要:深度学习通过训练样本进行特征识别,已经被广泛应用于道路提取领域。该方法不局限于特定类型的影像,但是受训练样本数量和计算机硬件的限制,所提取的道路会有断裂和噪声。针对上述问题,使用VGG卷积神经网络对道路进行初步提取后引入张量投票方法进行优化处理。首先通过影像变换、随机裁剪、过采样等方法对样本进行多模式扩充,进而训练VGG卷积神经网络模型;其次利用该网络从原始影像中初步分割道路面,接着对道路面的二值影像进行张量投票获取道路的显著性信息;最后在特征提取时针对显著性信息加入阈值获取道路面。实验结果表明,所提方法提取道路的召回率与正确率均达90%以上,与其他传统方法相比具有更高的精度,验证了所提方法的有效性。Deep learning is widely used in road extraction by training samples for feature recognition.This method is not limited to a specific type of image;however,the extracted road will be broken and noisy owing to the restriction of the number of training samples and computer hardware.Owing to the above problems,in this study,we use a VGG convolutional neural network to preliminarily extract roads and introduce a tensor voting method for optimization.First,multi-mode expansion of the samples is performed via image transformation,random cropping,and oversampling,and then,a VGG convolutional neural network model is trained.Second,the network is used to segment the road from the original image.Then,the tensor voting for the binary images of the road surface is used to obtain saliency information about the road.Finally,the threshold of significant information is set to obtain the road surface in the feature extraction process.The experimental results show that the recall rate and precision of the extracted road obtained by the proposed method are more than 90%,and the proposed method has a higher accuracy than other traditional methods,which verifies the effectiveness of the proposed method.
关 键 词:图像处理 道路提取 卷积神经网络 张量投票 高分辨率影像
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249