基于混合优化方法的立体匹配算法  被引量:5

Stereo matching algorithm based on hybrid optimization method

在线阅读下载全文

作  者:刘越 仲小清[2] 付金宇 李想 LIU Yue;ZHONG Xiaoqing;FU Jinyu;LI Xiang(School of Astronautics,Harbin Institute of Technology,Harbin 150001,China;Institute of Telecommunication Satellite,China Academy of Space Technology,Beijing 100094,China)

机构地区:[1]哈尔滨工业大学航天学院,黑龙江哈尔滨150001 [2]中国空间技术研究院通信卫星事业部,北京100094

出  处:《系统工程与电子技术》2020年第12期2692-2699,共8页Systems Engineering and Electronics

基  金:国家重点研发计划(2019YFB1312001)资助课题。

摘  要:为了改善线性生长算法获得视差图可靠性差的问题,提出了一种基于混合优化方法的立体匹配算法。该算法综合考虑了计算效率和图像可靠性,将视差匹配转换为多目标优化问题,通过提出的基于模拟退火的鸽群优化算法求解此优化问题,从而实现视差阈值的自适应调节,并获取相应的根点的最优视差值。所提出的混合优化方法较好地克服了局部寻优和全局寻优方法易受初值影响且收敛速度慢的缺点。此外,为了进一步提高视差图可靠性,利用滤波法去除不可靠的视差。仿真结果表明,该算法可以获得更多深度信息,提高了线性生长算法计算视差图的可靠性和鲁棒性。A stereo matching algorithm based on the hybrid optimization method is proposed to improve the low reliability of the disparity map obtained by the linear growth algorithm.Considering the calculation efficiency and the image reliability comprehensively,the proposed algorithm converts disparity matching into a multi-objective optimization problem.This optimization problem is solved by the pigeon-inspired optimization algorithm based on simulated annealing for realizing the adaptive adjustment of the disparity threshold and obtaining the optimal disparity value of the corresponding root point.The proposed hybrid optimization method overcomes the shortcomings of the local and the global optimization methods,which are vulnerable to initial values and have slow convergence.In addition,the filtering method is used to remove unreliable disparity for further improving the reliability of the disparity map.The simulation results show that the algorithm can get more depth informations,which enhances the reliability and the robustness of the disparity map calculated by the linear growth algorithm.

关 键 词:立体匹配 视差图 自适应调节 鸽群算法 模拟退火算法 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象