检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛珊[1,2] 李广青 吕琼莹 毛逸维[1] XUE Shan;LI Guang-qing;LÜQiong-ying;MAO Yi-wei(School of Mechanical and Electrical Engineering,Changchun University of Science and Technology,Changchun 130022,China;Chongqing Research Institute,Changchun University of Science and Technology,Chongqing 400000,China)
机构地区:[1]长春理工大学机电工程学院,长春130022 [2]长春理工大学重庆研究院,重庆400000
出 处:《工程科学学报》2020年第11期1516-1524,共9页Chinese Journal of Engineering
基 金:吉林省重点科技研发资助项目(20180201058SF)。
摘 要:针对如何识别无人机的问题,提出了一种基于卷积神经网络的声音识别无人机的方法.首先,对100 m范围内的无人机、鸟和人的声音进行采集、预处理和提取MFCC+GFCC特征值,将其特征参数作为卷积神经网络学习和识别的数据集;然后分别设计了支持向量机和卷积神经网络两种模型对无人机等声音进行识别实验.实验结果表明,运用支持向量机识别无人机的准确率为91.9%,卷积神经网络识别无人机的准确率为96.5%.为了进一步验证设计的卷积神经网络的识别能力,在部分UrbanSound8K数据集上进行测试,准确率达到90%.实验结果表明运用卷积神经网络识别无人机具有可行性,且识别性能优于支持向量机.With the rapid growth of the UAV market,UAVs have been widely used in aerial photography,agricultural plant protection,power inspection,forest fire prevention,high-altitude fire fighting,emergency communication,and UAV logistics.However,“black flight”incidents of unlicensed flights and random flights frequently occur,which results in severe security risks to civil aviation airports,sensitive targets,and major activities.Moreover,owing to their characteristics of maneuverability,intelligent control,and low cost,UAVs can be easily used for criminal activities,which threatens public and national security.How to effectively detect UAVs and implement effective measures for UAVs,especially“black-flying”UAVs,is an active and difficult problem that needs to be urgently solved,and it is also an important research area in the field of anti-UAV systems.The research and development of anti-UAV systems is an important focus in national public security,and UAV identification is one of the key technologies in anti-UAV systems.Aiming at the problem of how to recognize UAVs,a sound-recognition method based on a convolutional neural network(CNN)was proposed.The UAV anti-jamming technology based on acoustic signals is not easily affected by an UAV size,shelter,ambient light,and ground clutter,and sound is an inherent attribute of UAVs,which is also applicable to UAVs in a radio-silence state.In this study,UAV sounds,bird sounds,and human voice within 100 m were collected and preprocessed;then the mel frequency cepstral coefficient and gammatone frequency cepstral coefficient eigenvalues were extracted.Support vector machine(SVM)and CNN models were designed to recognize UAV sounds and other sounds.The experimental results show that the SVM and CNN accuracies are 93.3%and 96.7%,respectively.To further verify the recognition ability of the designed CNN,it was tested on some Urbansound8K datasets,and its accuracy reached 90%.The experimental results show that a CNN is feasible for UAV recognition,and it has a better recognition
关 键 词:无人机 声音检测 公共安全 MFCC特征值 GFCC特征值 卷积神经网络
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40