基于混沌粒子群支持向量机的电子战无人机作战效能评估  被引量:6

Operational Effectiveness Evaluation of Electronic Warfare UAV based on Chaotic Particle Swarm Optimization Support Vector Machine

在线阅读下载全文

作  者:马兴民 张勇[1] MA Xingmin;ZHANG Yong(System Second Department,North China Institute of Computing Technology,Beijing100083,China)

机构地区:[1]华北计算技术研究所系统二部,北京100083

出  处:《软件工程》2020年第12期1-3,共3页Software Engineering

摘  要:电子战无人机的作战效能评估在未来智能网信体系作中具有重要意义。针对电子战无人机作战效能评估过程中影响因素复杂、小样本、非线性等问题,引入了支持向量机算法,为了提高评估的效率和有效性,引入具有较强伪随机性、自身规律性的混沌系统对粒子群初始粒子进行了优化,然后利用混沌粒子群对支持向量机的参数进行了优选,提高了整体评估效率。仿真实验结果表明混沌粒子群-支持向量机模型可以准确地对电子战无人机进行作战效能评估,具有较好的计算精度。The combat effectiveness evaluation of electronic warfare UAVs is of great significance in the future intelligent network information system.Aiming at the existing problems of complex influencing factors,small samples,and nonlinearity,the support vector machine algorithm is considered.In order to improve the efficiency and effectiveness of the evaluation,strong pseudo-random and self-regularity chaotic system firstly optimizes initial particles of the particle swarm,and then uses the chaotic particle swarm to optimize the parameters of the support vector machine,which improved the overall evaluation efficiency.The simulation experiment results show that the chaotic particle swarm-support vector machine model can accurately evaluate the combat effectiveness of electronic warfare UAVs,and has good calculation accuracy.

关 键 词:电子战无人机 作战效能评估 混沌粒子群 支持向量机 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象