NSST域内结合UDWT与PCNN医学图像融合算法  被引量:3

Medical image fusion algorithm based on UDWT and PCNN inNSST domain

在线阅读下载全文

作  者:黄陈建 戴文战[1] HUANGChen-jian;DAI Wen-zhan(Zhejiang Gongshang University School of imformation and electronic engineering,Hangzhou Zhejiang 310018,China)

机构地区:[1]浙江工商大学信息与电子工程学院,浙江杭州310018

出  处:《光电子.激光》2020年第11期1157-1165,共9页Journal of Optoelectronics·Laser

基  金:国家自然科学基金资助项目(61374022)资助项目。

摘  要:为了进一步突出医学融合图像的细节信息﹐提升清晰度,本文提出NSST域内结合UDWT与PCNN医学图像融合算法。首先,将两幅源图像分别通过NSST进行分解,获得相应的低频和高频子带。在低频融合规则中,采用UDWT将低频子带进一步分解为能量子带与细节子带﹐进一步利用PCNN融合这两幅源图像对应的低频能量子带﹔利用区域能量和融合这两幅源图像的低频细节子带,再应用逆UDWT融合低频细节子带和能量子带。其次,在高频融合规则中,采取UDWT分别将A和B两幅源图像对应的高频子带进一步分解为高频能量子带与高频细节子带,再根据拉普拉斯能量和与区域能量和的组合,获取融合后的高频子带。最后,利用逆NSST获取融合图像。实验证明,本文提出的算法与现有主流算法相比,实验结果在视觉效果和客观指标方面均具有较大优势。In order to further highlight the details of medical image fusion and improve the clarity,this paper proposes a medical image fusion algorithm based on UDWT and PCNN in NSST domain.In this algorithm,the source image is decomposed by NSST to obtain low-frequency and high-frequency subbandcoefficients.In the low frequency fusion rules,the low frequency sub-band is further decomposed into energy sub-band and detail sub-band by UDWT,and the low frequency energy sub-band corresponding tothe two source images is fused by PCNN;the low frequency detail sub-band of the two source images isfused by region energy and the low frequency detail sub-band of the fusion source image,and then the inverse UDWT is applied to fuse the low frequency detail sub-band and energy quantum band.Secondly,inthe rules of high-frequency fusion,the high-frequency sub-band corresponding to A and B source imagesis further decomposed into high-frequency energy sub-band and high-frequency detail sub-band by UDWT,and then the fused high-frequency sub-band is obtained according to the combination of Laplace en-ergy and regional energy.Finally,the fusion sub-band is obtained by inverse NSST.Experimental resultsshow that the proposed algorithm has greater advantages in visual effect and objective indicators com-pared with the existing mainstream algorithms.

关 键 词:图像融合 NSST PCNN 非下采样小波变换 参数设置 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象