基于高斯过程的多机动扩展目标跟踪  被引量:3

Multiple Maneuvering Extended Target Tracking Based on Gaussian Process

在线阅读下载全文

作  者:郭云飞[1] 李勇 任昕 彭冬亮[1] GUO Yun-Fei;LI Yong;REN Xin;PENG Dong-Liang(School of Automation,Hangzhou Dianzi University,Hangzhou 310018)

机构地区:[1]杭州电子科技大学自动化学院,杭州310018

出  处:《自动化学报》2020年第11期2392-2403,共12页Acta Automatica Sinica

基  金:浙江省自然科学基金重点项目(LZ20F010002);国家自然科学基金(61871166)资助。

摘  要:针对杂波环境下多机动扩展目标跟踪问题,提出一种基于高斯过程的变结构多模型联合概率数据关联方法.首先,采用期望模型扩展方法构建自适应模型集,并对各个扩展目标状态进行初始化.其次,基于高斯过程建立联合跟踪门以选择有效量测,形成联合关联矩阵.然后,拆分联合关联矩阵得到可行关联矩阵并求解关联事件概率.最后,利用联合概率数据关联滤波器更新各个扩展目标的状态和协方差,并将更新的状态进行融合,得到最终的状态估计.仿真验证了所提方法的有效性.Aiming at the problem of multiple maneuvering extended target tracking in clutter,a variable structure multiple model joint probabilistic data association method based on Gaussian process is proposed.Firstly,the adaptive model set is constructed by the expecting model augmentation method,and each extended target state is initialized.Secondly,based on the Gaussian process,the joint validation gate of extended target is established to select the valid measurements and to form the joint association matrix.Then,the joint association matrix is splitted to obtain the feasible association matrix and the probabilities of association events are calculated.Finally,the joint probabilistic data association filter is used to update the state and covariance of each extended target,and the updated states are fused to obtain the final state estimation.Simulation result verifies the effectiveness of the algorithm.

关 键 词:高斯过程 多机动扩展目标 期望模型扩展 变结构多模型 联合概率数据关联 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置] TN713[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象