基于细化多尺度深度特征的目标检测网络  被引量:13

Object Detection Networks Based on Refined Multi-scale Depth Feature

在线阅读下载全文

作  者:李雅倩[1] 盖成远 肖存军 吴超 刘佳甲 LI Ya-qian;GAI Cheng-yuan;XIAO Cun-jun;WU Chao;LIU Jia-jia(Key Lab of Industrial Computer Control Engineering of Hebei Province,Yanshan University,Qinhuangdao,Hebei 066004,China)

机构地区:[1]燕山大学工业计算机控制工程河北省重点实验室,河北秦皇岛066004

出  处:《电子学报》2020年第12期2360-2366,共7页Acta Electronica Sinica

摘  要:现有深度卷积神经网络中感受野尺度单一,无法适应目标的尺度变化和边界形变,故此本文提出了一种提取并融合多尺度特征的目标检测网络.该网络通过减少池化并在网络底层加入空间加信道压缩激励模块来突出可利用的细节信息,生成高质量的特征图;此外,在深层网络中加入可变多尺度特征融合模块,该模块具有多种尺度的感受野并可根据物体边界预测采样位置,最后通过融合多尺度特征使网络具有更强的特征表达能力并且对不同尺度实例及其边界信息更具鲁棒性.实验证明,本文结构实现了比原有结构更高的平均精度,与目前主流目标检测算法相比也具有一定优势.In the existing deep convolution neural network,the scale of receptive field is single,which could not adapt to the scale change and boundary deformation of the target.Therefore,a target detection network based on multi-scale feature extraction and feature fusion is proposed in this paper.The proposed network reduces pooling and adds space as well as channel compression excitation module at the bottom of the network to highlight the details and generate high-quality feature map.Besides,a variable multi-scale feature fusion module is added to the deep network,which has a multi-scale receptive field and can predict the position according to object boundary.Finally,the multi-scale feature fusion is used to enable the network of stronger ability of feature expression and is more robust to different scale and flexible boundary of instances.Experimental results show that the proposed structure achieves higher average accuracy than the original structure,and also has certain advantages compared with the state-of-the-art algorithms.

关 键 词:目标检测 特征金字塔网络 可变形卷积 信道空间压缩激励 多尺度特征融合 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象