检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘晓华[1] LIU Xiao-hua(School of Mathematics and Information Science,Leshan Normal University,Leshan Sichuan 614000,China)
机构地区:[1]乐山师范学院数学与信息科学学院,四川乐山614000
出 处:《西南师范大学学报(自然科学版)》2020年第12期15-19,共5页Journal of Southwest China Normal University(Natural Science Edition)
基 金:四川省教育厅重点科研基金项目(18ZA0242);乐山师范学院重点项目(LZD014).
摘 要:区间上严格单调连续自映射的迭代根问题得到了彻底的解决.一类只有有限个非单调点的连续自映射,称为严格逐段单调自映射,简称为PM映射.对这类自映射,当特征区间存在时,已获得了一些关于其迭代根存在性的结果.继续研究PM映射迭代根的不存在性.The problem of iterative roots of monotone continuous self-mappings on interval was solved completely.A class of nonmonotone continuous self-mappings,which are continuous self-mappings with finite nonmonotone points,is referred to as strictly piecewise monotone self-mappings,or PM mappings simply.For this class of self-mappings,some results have been obtained for iterative roots when the characteristic interval exists.In this paper we continue to study non-existence of iterative roots of PM mappings.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7