检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘启浪 汤勃[1] 孔建益[1] 王兴东[1] LIU Qi-lang;TANG Bo;KONG Jian-yi;WANG Xing-dong(School of Machinery and Automation Engineering,Wuhan University of Science and Technology,Wuhan 430081,China)
机构地区:[1]武汉科技大学机械自动化学院,武汉430081
出 处:《组合机床与自动化加工技术》2020年第12期27-30,共4页Modular Machine Tool & Automatic Manufacturing Technique
摘 要:为提高带钢表面缺陷图像的分类准确率,文章研究了带钢表面缺陷图像多尺度局部二值模式(Local Binary Pattern,LBP)特征。通过提取多种类型的多尺度LBP特征以及不同尺度的LBP联合特征,并与灰度共生矩特征进行对比;利用支持向量机(Support Vector Machine,SVM)进行分类实验。实验结果表明,对于带钢表面缺陷图像的LBP特征,(16,2)尺度LBP特征的分类准确率高于(8,1)尺度LBP特征;两种尺度联合特征分类准确率高于单一尺度特征;各类LBP特征与灰度共生矩特征中,LBP直方图傅里叶变换特征具有更高的分类准确率。In order to improve the classification accuracy of strip surface defect images,multi-scale local binary pattern(LBP)features of strip surface defect images were studied.By extracting multiple types of multi-scale LBP features and LBP joint features at different scales and compare it with the feature of gray level co-occurrence matrix;Use support vector machine(SVM)for classification experiments.The experimental results show that for LBP features of strip surface defect images,the classification accuracy rate of(16,2)scale LBP features is higher than(8,1)scale LBP features;the classification accuracy rate of combined features of two scales is higher than that of single scale features;Among the various types of LBP features and gay level co-occurrence matrix features,the LBP histogram Fourier transform feature has higher classification accuracy.
关 键 词:带钢缺陷 局部二值模式 多尺度 特征提取 SVM分类
分 类 号:TH16[机械工程—机械制造及自动化] TG506[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.191.57