检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱艳 周宝星 李耀堂[2] ZHU Yan;ZHOU Bao-xing;LI Yao-tang(School of Mathematics,Kunming University,Kunming 650214;School of Mathematics and Statistics,Yunnan University,Kunming 650091)
机构地区:[1]昆明学院数学学院,昆明650214 [2]云南大学数学与统计学院,昆明650091
出 处:《工程数学学报》2020年第6期771-780,共10页Chinese Journal of Engineering Mathematics
基 金:The National Natural Science Foundation of China(11861077);the Foundation of Edcucation Commission of Yunnan Province(2011Y011);the Natural Science Foundation of Yunnan Provincial Department of Science and Technology(2019FH001-078);the Research Fund of Kunming University(YJL20019).
摘 要:随机矩阵及其特征值问题具有广泛的应用背景,计算机辅助几何设计、数理经济学和马尔科夫链等领域都与其有着密切的联系.对随机矩阵特征值问题的研究主要集中在两个方面:在复平面上给出包含随机矩阵所有非1特征值的区域;给出随机矩阵特征值1和非1特征值之间距离的近似值估计.本文对这两方面问题进行了研究,获得了如下结果:通过选择新的参数,获得随机矩阵非1特征值新盖尔型包含区域,改进了近期一些相关成果.并由此得到估计正随机矩阵特征值1与非1特征值距离的新上界算法.最后,数值例子表明算法的优越性.Stochastic matrix and its eigenvalue localization play key roles in many application fields such as computer aided geometric design,mathematical economics and Markov chain.Stochastic matrix eigenvalue problem contains mainly two aspects:providing a region which contains all eigenvalues different from 1 for stochastic matrices in the complex plane;estimating approximately the gap between the dominant eigenvalue 1 and the cluster of all other eigenvalues.In this paper,we localize and estimate the eigenvalues different from 1 of stochastic matrices and obtain the following results:first,we obtain a new and simple region which includes all eigenvalues of a stochastic matrix different from 1 by refining the Ger sgorin circle.Furthermore,an algorithm is proposed to estimate an upper bound for the spectral gap of the subdominant eigenvalue of a positive stochastic matrix.Numerical examples illustrate that the proposed results are effective.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222