检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏东 孙静宇[1] 海洋 Wei Dong;Sun Jingyu;Hai Yang(College of Software Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出 处:《计算机测量与控制》2020年第12期161-165,共5页Computer Measurement &Control
基 金:山西省科技厅重点研发计划项目(201803D31226);山西省研究生教育创新项目(2019SY117)。
摘 要:针对在推荐系统领域中常用数据集的数据分布不平衡、稀疏性大和用户评分偏好不同等问题,提出了基于难分样本挖掘的对抗自编码器推荐模型;考虑到用户偏好差异,使用均模型对数据集进行特征提取处理,在保留数据统计学特征的同时,降低了计算复杂度;之后,基于三元组损失算法对经过均模型处理的数据集进行难分样本挖掘;通过对数据集样本进行正负分类,提升了训练样本质量;再将正负样本分类后的数据分别作为对抗自编码器的输入,从重构和对抗两方面共同对评分预测模型进行训练;同时,采用Adam优化算法为不同参数单独计算更新梯度;实验结果表明,该推荐模型显著提升了推荐性能,多项指标优于基线模型;基于难分样本挖掘的推荐自编码器推荐系统具有一定实用价值。Commonly used datasets in the field of recommendation suffer from unbalanced data distribution,sparsity and different user rating preferences.All these problems affect the quality of recommendation.Thus,this paper proposed a recommender model combining hard example mining with adversarial autoencoder.Considering the difference of users’preference,Mean Model based triplet loss algorithm was introduced to classify the dataset into positive and negative samples and thus improve the quality of the training data.The application of Mean Model can both reduce computational complexity and retain the statistical feature of original data.Using classified samples,the rating prediction model was trained from both reconstruction and adversarial aspects.Adam optimization algorithm was used to calculate different update gradients for different parameters.Experimental results show that the recommendation model improves the recommendation accuracy significantly,and several performance indexes are better than baseline models.Hard example mining based adversarial autoencoder recommender system has certain practical value.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3