拉曼光谱技术在农产品药物残留检测中的应用  被引量:4

Application of Raman spectroscopy technology in detection of pesticide residues in agricultural products

在线阅读下载全文

作  者:杨德红 张雷蕾 卢诗扬 朱诚 YANG De-Hong;ZHANG Lei-Lei;LU Shi-Yang;ZHU Cheng(College of Life Sciences,China Jiliang University,Hangzhou 310018,China;Key Laboratory of Marine FoodQuality and Hazard Control Technology in Zhejiang Province,Hangzhou 310018,China)

机构地区:[1]中国计量大学生命科学学院,杭州310018 [2]浙江省海洋食品品质及危害物控制技术重点实验室,杭州310018

出  处:《食品安全质量检测学报》2020年第23期8836-8843,共8页Journal of Food Safety and Quality

基  金:浙江省自然科学基金青年基金(LQ18F050003);国家重点研究与发展计划(2017YFF0211302);浙江省新苗人才计划(2020R409050)。

摘  要:近年来,农产品药物残留超标引发了一系列食品安全问题,为了保障国家食品安全、保护消费者健康,需要对农产品中的药物残留进行定性定量检测。表面增强拉曼散射技术(surface-enhanced Raman scattering,SERS)是一种极具吸引力的工具,可用于高效检测农药残留。本文介绍了表面增强拉曼光谱检测技术的概况,简介了拉曼增强基底,分析了表面增强拉曼光谱技术在药物标准溶液、农产品(肉类、水产品、果蔬和其他部分农产品等)药物残留检测领域中的研究现状,并针对当前农产品药物残留检测的发展趋势进行前景展望。In recent years,the excess of drug residues in agricultural products have caused a series of food safety problems,in order to ensure national food safety and protect consumer’s health,it is necessary to carry out qualitative and quantitative detection of drug residues in agricultural products.Surface-enhanced Raman scattering(SERS)is an attractive tool for highly sensitive detection of pesticides residue.This paper introduced the general situation of surface-enhanced Raman spectroscopy detection technology,described the surface-enhanced Raman substrate,analyzed the current research status of surface-enhanced Raman spectroscopy technology in the field of drug residue detection in drug standard solution,agricultural products(such as meat,aquatic products,fruits and vegetables,and other agricultural products)and made a prospect for the current development trend of drug residue detection in agricultural products.

关 键 词:残留 表面增强拉曼光谱 基底 农兽药 抗生素 

分 类 号:TS207.3[轻工技术与工程—食品科学] O657.37[轻工技术与工程—食品科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象