检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:武俊峰 郭旭飞[1] Wu Junfeng;Guo Xufei(School of Electrical & Control Engineering, Heilongjiang University of Science & Technology,Harbin 150022, China;Automation College of Harbin University of Technology, Harbin 150080, China)
机构地区:[1]黑龙江科技大学电气与控制工程学院,哈尔滨150022 [2]哈尔滨理工大学自动化学院,哈尔滨150080
出 处:《黑龙江科技大学学报》2020年第6期687-691,共5页Journal of Heilongjiang University of Science And Technology
摘 要:为有效控制三级倒置摆杆维持在动态平衡状态,以直线三级倒立摆为研究对象,建立三级倒立摆杆系统物理模型,设计LQR控制器,利用PSO-AFSA算法优化直线三级倒立摆控制参数,仿真验证PSO-AFSA算法优化直线三级倒立摆系统的动态稳定性。结果表明,LQR控制器使直线三级倒立摆系统趋于动态稳定平衡需要约4.0 s,而PSO-AFSA算法优化后的系统达到动态平衡状态的时间约缩减至3.2 s,系统各变量的超调量明显减少,具有更为理想的动态稳定性与抗干扰性。This paper is aimed at an effective control of the three-stage inverted pendulum to keep it in the dynamic equilibrium state.The study involves deriving the physical model of the three-stage inverted pendulum system by taking the linear three-stage inverted pendulum as the research object and thereby designing the LQR controller;optimizing the control parameters of the straight-line three-stage inverted pendulum using PSO-AFSA algorithm;and ultimately using simulation to verify the ability of the PSO-AFSA algorithm to optimize the dynamic stability of the straight-line three-stage inverted pendulum system.The results show that,compared with the LQR controller which requires about 4.0 s to make the linear triple inverted pendulum system tend to dynamic stability and balance,the system optimized by PSO-AFSA algorithm can reach dynamic equilibrium using 3.2 s,giving an obviously reduced overshoot of each variable in the system,and thus a better dynamic stability and anti-interference.
关 键 词:最优控制 直线三级倒立摆 PSO-AFSA LQR
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90