检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱刘柱 王绪利 马静 陈庆会 齐先军[2] ZHU Liuzhu;WANG Xuli;MA Jing;CHEN Qinghui;QI Xianjun(Institute of Economy and Technology,State Grid Anhui Electric Power Co.,Ltd.,Hefei 230071,China;Anhui Provincial Laboratory of New Energy Utilization and Energy Conservation(Hefei University of Technology),Hefei 230009,China)
机构地区:[1]国网安徽省电力有限公司经济技术研究院,合肥市230071 [2]安徽新能源利用与节能省级实验室(合肥工业大学),合肥市230009
出 处:《电力建设》2020年第12期133-140,共8页Electric Power Construction
基 金:中央高校基本科研业务费专项资金资助项目(PA2020GDSK0099)。
摘 要:文章提出了基于小波包分解(wavelet packet decomposition,WPD)与循环神经网络的电冷热综合能源短期负荷预测方法。利用能够突出负荷细节特征的小波包对电冷热负荷进行频段分解,分析每一频段中电冷热负荷的互相关性。为体现每一频段中电冷热负荷的互相关性对预测结果的影响,将频段中互相关性较强的负荷类型放入同一处理负荷自相关性的循环神经网络模型中进行预测;频段中互相关性较弱的负荷类型则单独进行预测。与直接将电冷热负荷放入同一个循环神经网络进行预测相比,以及与将电冷热负荷通过同一个反向传播神经网络进行预测相比,所提方法考虑了综合能源在不同频段内电冷热负荷的互相关性和电冷热负荷本身的自相关性,能够有效降低负荷预测的平均绝对百分比误差。This paper proposes a short-term load forecast method for electric,cooling and heating loads on the basis of wavelet packet decomposition(WPD)and recurrent neural network.Wavelet packets that can highlight the detail characteristics of the load are used to decompose electric,cooling and heating loads,and analyze the cross-correlation between the electric,cooling and heating loads in each frequency band.In order to reflect the influence of the cross-correlation of electric,cooling and heating loads in different frequency bands on the forecasting results,those loads with strong cross-correlation in a frequency band are put into the same recurrent neural network model that can handle the autocorrelation of the load;while those with weak cross-correlation in a frequency band are forecasted separately.Compared with directly placing the electric,cooling and heating loads into the same recurrent neural network for forecasting,and compared with placing the electric,cooling and heating loads into the same back propagation neural network for forecasting,the method in this paper considers the cross-correlation of the electric,cooling and heating loads in each frequency band and the autocorrelation of the electric,cooling and heating loads,which effectively reduce the mean absolute percentage error of load forecast.
关 键 词:综合能源系统 负荷预测 相关性分析 小波包分解(WPD) 循环神经网络
分 类 号:TM71[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15