基于BP神经网络的氯盐渍土溶陷特性研究  被引量:2

Study on Thaw Settlement Characteristics of Chloride Saline Soil Based on BP Neural Network

在线阅读下载全文

作  者:孙建忠[1] SUN Jian-zhong(School of Civil Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)

机构地区:[1]兰州交通大学土木工程学院,兰州730070

出  处:《兰州交通大学学报》2020年第6期26-31,共6页Journal of Lanzhou Jiaotong University

摘  要:青海地区铁路路基的溶陷不均匀沉降病害较为严重,氯盐是引起路基溶陷的最主要因素.为了研究氯盐渍土的溶陷特性,以青海西部氯盐渍土为研究对象,建立基于BP神经网络模型的氯盐渍土溶陷特性的预测方法,研究氯盐含量、含水率及上覆荷载等主要影响因素对氯盐渍土溶陷系数的影响.研究表明,该预测模型的预测结果与实测数据具有较高的拟合度,验证了神经网络模型预测氯盐渍土溶陷特性的可行性.Non-uniform settlement of railway subgrade in Qinghai is serious,among which chlorine salt is the main factor causing the subsidence of railway subgrade.In order to study the subsidence characteristics of chlorine saline soil,a BP neural network model was established to predict the subsidence characteristics of chlorine saline soil in west Qinghai province,and the influences of major factors such as chlorine content,water content and overburden on the subsidence coefficient of chlorine saline soil were studied.The study shows that the prediction results of the model in this paper have a high fitting degree with the measured data,which verifies the feasibility of the neural network model in predicting the subsidence characteristics of the chlorine saline soil.

关 键 词:铁路路基 氯盐渍土 溶陷系数 BP神经网络 

分 类 号:U213.1[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象