检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李建文[1] 秦刚[1] 李永刚[1] 董继 孙伟 LI Jianwen;QIN Gang;LI Yonggang;DONG Ji;SUN Wei(State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources(North China Electric Power University),Baoding 071003,Hebei Province,China;Baoding Power Supply Branch Hebei Electric Power Company,Baoding 071000,Hebei Province,China)
机构地区:[1]新能源电力系统国家重点实验室(华北电力大学),河北省保定市071003 [2]河北省电力公司保定供电分公司,河北省保定市071000
出 处:《电网技术》2020年第12期4734-4743,共10页Power System Technology
基 金:河北省自然科学基金(E2017502053);中央高校基本研究基金(2017MS104)。
摘 要:针对基于特征值方法电能质量扰动识别中存在庞大而复杂的特征值选取问题,提出以特征曲线为特征的布莱克曼窗S变换与数据库查询新方法。提出布莱克曼窗S变换采用布莱克曼窗宽函数并通过窗宽比控制窗宽,相较于多分辨率广义S变换具有更好的时频分辨率。通过布莱克曼窗S变换得到扰动信号的时频模矩阵,在模矩阵上提取时频特征曲线,然后通过波动能量密度与快速傅立叶变换进行特征曲线分割,排除噪声的干扰,降低特征曲线长度,最后建立树状结构的时频数据库,采用动态时间规整距离查询分类方法,根据隶属度的关系进行快速分类,提高识别的正确率。通过仿真数据分析表明高时频精度的布莱克曼窗S变换提高了算法的识别正确率并且特征曲线分割提高了算法的抗噪声干扰能力,现场数据验证了该算法的有效性。Aiming at the huge and complex problem of eigenvalue selection in energy quality disturbance recognition based on the eigenvalue method, a new Blackman window S transform database query method with characteristic curve is proposed. In this paper, the Blackman window S transform uses the Blackman window width function and controls the window width through the window width ratio, which has better time-frequency resolution than Multiresolution Generalized S-Transform. The time-frequency characteristic curve of disturbance signal is extracted from the Blackman window S transform modulus matrix, and then it is segmented by the wave energy density transformation and the fast Fourier transform, which eliminates the interference of noise and reduces the length of characteristic curve. Finally, the tree-structured time-frequency database is established in which the dynamic time warping distance query classification method is used to classify the disturbance signal rapidly according to the membership degree in order to improve the recognition accuracy. The simulation data analysis shows that the Blackman window S transform with high time-frequency accuracy improves the recognition accuracy and that the feature curve segmentation improves the anti-noise ability of the algorithm. The validity of the algorithm is verified through the field data。
关 键 词:布莱克曼窗 S变换 特征曲线分割 树状数据库 动态时间规整
分 类 号:TM721[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117