检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈瑛[1] 张晓强 陈昂轩 赵筱钰 董玉博 CHEN Ying;ZHANG Xiaoqiang;CHEN Angxuan;ZHAO Xiaoyu;DONG Yubo(College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)
机构地区:[1]中国农业大学信息与电气工程学院,北京100083
出 处:《农业机械学报》2020年第S02期442-448,共7页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家发展改革委员会综合数据服务系统之基础平台建设项目(JZNYYY001)。
摘 要:针对从海量食品安全事件新闻报道中很难抽取出所需答案的问题,以食品安全事件语料库为研究对象,提出了一种基于信息抽取技术的自动问答系统。首先,利用深度学习模型TextCNN对用户输入的问题进行分类,得到其所属类型。其次,对于输入问题,借助Lucene搜索引擎找到其最佳匹配文档。再次,根据输入问题的类型,从食品安全事件数据库(采用信息抽取技术自动提取的一个结构化数据库)中筛选出该文档所包含的答案候选句集合。最后,利用深度学习模型Bi-LSTM及基于答案候选句上下文的特征提取方法构建一个答案抽取模型,该模型能从给定的答案候选句集合中提取出最终答案。为检查基于食品安全事件数据库的答案候选句筛选方式及基于答案候选句上下文的特征提取方式对整个自动问答系统性能的影响,进行了多种比较实验,结果表明含有基于食品安全事件数据库的答案候选句筛选方式和基于答案候选句上下文的特征提取方式的问答系统表现最佳,其回答准确率达到44%。这相比于传统的问答系统,具有明显的优势。To solve the problem of extracting the answer for a question from massive food safety incident news reports,a question answering(QA)system was proposed.Firstly,a deep learning method TextCNN was used to classify the question provided by users.Secondly,a search engine method Lucene was used to find the best matching report for the question.Thirdly,based on a food safety event database(a structured knowledge base which was automatically constructed by using the information extraction technology)and the type of the input question,a set of answer sentence candidates was selected from the best matching report.Finally,based on the deep learning model of bi-directional long short-term memory(Bi-LSTM)and a feature extraction method which can extract effective information from the contexts of the answer candidate sentences,an answer extraction model was constructed,which can automatically extract the final answer from the given set of answer candidate sentences.To evaluate the impact of the selection method of answer candidate sentences based on the food safety event database and the feature extraction method based on the contexts of answer candidate sentences,different experiments were conducted.The results showed that the QA system using the structured knowledge database and the context-based feature extraction achieved the best performance(44%in accuracy),which significantly outperformed over traditional QA systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.242.179