基于样本扩充和改进Lasso回归的视线估计  被引量:1

Gaze Estimation Based on Sample Expansion and Improved Lasso Regression

在线阅读下载全文

作  者:王洪枫 王建中[1] 白柯萌 张晟 WANG Hong-feng;WANG Jian-zhong;BAI Ke-meng;ZHANG Sheng(School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China)

机构地区:[1]北京理工大学机电学院,北京100081

出  处:《北京理工大学学报》2020年第12期1340-1346,共7页Transactions of Beijing Institute of Technology

基  金:国家部委基础科研计划资助(JCKY2017602C016)。

摘  要:为了利用眼部特征进行准确的视线估计,提出了一种基于样本扩充和改进Lasso回归的方法,建立眼部特征与视线之间的映射关系.通过对小样本评分得到优质样本,进而完成样本扩充,利用改进的Lasso回归得到准确的视线估计模型.该方法对标定过程中的眨眼等干扰具有鲁棒性,受干扰后仍可保持相对较高的视线估计准确度.实验结果表明:标定过程无干扰,该方法视线估计准确度比传统方法提高11.25%;标定数据加入6.67%异常数据,该方法视线估计准确度比传统方法提高22.62%.In order to make use of eye features for accurate line-of-sight estimation,a method based on sample expansion and improved Lasso regression was proposed to establish the mapping relationship between eye features and line of sight.Quality samples were obtained by scoring all samples,and then sample expansion was completed.The improved Lasso regression was used to obtain an accurate line-of-sight estimation model.This method is robust for interference such as blinking in the calibration process,and can still maintain a relatively high accuracy of line-of-sight estimation with interference.The experimental results show that the accuracy of sight estimation of this method is 11.25%higher than that of the traditional method without interference;the accuracy of sight estimation of this method is 22.62%higher than that of the traditional method with 6.67%abnormal data in the calibration data.

关 键 词:视线估计 样本扩充 改进Lasso回归 

分 类 号:TP23[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象