检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王洪枫 王建中[1] 白柯萌 张晟 WANG Hong-feng;WANG Jian-zhong;BAI Ke-meng;ZHANG Sheng(School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China)
出 处:《北京理工大学学报》2020年第12期1340-1346,共7页Transactions of Beijing Institute of Technology
基 金:国家部委基础科研计划资助(JCKY2017602C016)。
摘 要:为了利用眼部特征进行准确的视线估计,提出了一种基于样本扩充和改进Lasso回归的方法,建立眼部特征与视线之间的映射关系.通过对小样本评分得到优质样本,进而完成样本扩充,利用改进的Lasso回归得到准确的视线估计模型.该方法对标定过程中的眨眼等干扰具有鲁棒性,受干扰后仍可保持相对较高的视线估计准确度.实验结果表明:标定过程无干扰,该方法视线估计准确度比传统方法提高11.25%;标定数据加入6.67%异常数据,该方法视线估计准确度比传统方法提高22.62%.In order to make use of eye features for accurate line-of-sight estimation,a method based on sample expansion and improved Lasso regression was proposed to establish the mapping relationship between eye features and line of sight.Quality samples were obtained by scoring all samples,and then sample expansion was completed.The improved Lasso regression was used to obtain an accurate line-of-sight estimation model.This method is robust for interference such as blinking in the calibration process,and can still maintain a relatively high accuracy of line-of-sight estimation with interference.The experimental results show that the accuracy of sight estimation of this method is 11.25%higher than that of the traditional method without interference;the accuracy of sight estimation of this method is 22.62%higher than that of the traditional method with 6.67%abnormal data in the calibration data.
分 类 号:TP23[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.42.14