基于曲率半径及多传感器融合的动车组工况识别  

Working Condition Identification of EMU Based on Radius of Curvature and Multi-sensor Fusion

在线阅读下载全文

作  者:张一喆 李强[2] ZHANG Yizhe;LI Qiang(Locomotive&Car Research Institute,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China;Key Laboratory of Vehicle Advanced Manufacturing,Measuring and Control Technology of Ministry of Education,Beijing Jiaotong University,Beijing 100044,China)

机构地区:[1]中国铁道科学研究院集团有限公司机车车辆研究所,北京100081 [2]北京交通大学载运工具先进制造与测控技术教育部重点实验室,北京100044

出  处:《铁道机车车辆》2020年第6期6-10,共5页Railway Locomotive & Car

摘  要:在进行运用工况下动车组转向架、车体等结构的疲劳损伤研究过程中认识到,可靠的损伤评估和寿命预测的基础,是对曲线、道岔、隧道、交会等工况的清晰划分以及精准识别。在基于曲率半径的曲线、道岔等工况识别中,采用微机械(MEMS)陀螺仪及GPS传感器信号可进行上述工况的初步筛选和判定。针对不同工况中存在的曲率重合问题,采用构架侧梁端部的垂向加速度信号,依据希尔伯特-黄变换(HHT)方法进行经验模态分解(EMD),获得各阶固有模态函数(IMF),并进行能量熵计算统计,从而实现曲线及道岔等工况的准确识别。During the research on fatigue damage of EMU bogies and bodies under operating conditions,it is recognized that the basis of reli⁃able damage assessment and life prediction is the clear division and precise identification of curve,turnout,tunnel,fair,etc.In the identifica⁃tion of curve and turnout based on the radius of curvature,the MEMS gyroscope and GPS sensor signals can be used to perform preliminary screening and determination of the above conditions.For the coincidence of the radius of curvature existing in different working conditions,the vertical acceleration signal at the end of the side beam of the frame can be used for resolution.First,empirical mode decomposition(EMD)is performed using the Hilbert-Huang transform(HHT)method to obtain various order intrinsic mode function(IMF).Then the ener⁃gy entropy calculation and statistics are carried out to realize the accurate identification of the conditions such as curve and turnout.

关 键 词:动车组 工况识别 曲率半径 经验模态分解 固有模态函数 能量熵 

分 类 号:U270.1[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象