检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙建晖[1] SUN Jianhui(Department of Railway Transportation,Liaoning Railway Vocational and Technical College,Jinzhou Liaoning 121000,China)
机构地区:[1]辽宁铁道职业技术学院铁道运输学院,辽宁锦州121000
出 处:《机械设计与研究》2020年第6期96-99,共4页Machine Design And Research
摘 要:为提升轨道交通电机轴承故障特征提取效果,提出了一种基于局部特征尺度分解(LCD)和散布熵(DE)相结合的自适应多尺度散布熵(AMSDE)的轴承故障分析与诊断方法。首先,采用LCD对轴承振动信号进行自适应分解,获取原始信号不同尺度下的内禀尺度分量(ISC);其次,计算每个ISC分量的DE值,并选取若干个ISC分量DE值组成特征向量;最后,将该特征向量输入支持向量机(SVM)中进行故障诊断。轴承不同类型和不同程度故障诊断的纵向和横向对比实验结果表明,所提方法能够提升轴承的故障诊断效果,相比其他一些方法,具有一定的优势。In order to improve fault feature extraction effect of rail traffic motor bearing,a fault analysis and diagnosis method of motor bearing based on adaptive multi-scale dispersion entropy(AMSDE)which combines local characteristic-scale decomposition(LCD)and dispersion entropy(DE)was proposed.Firstly,the vibration signal was adaptively decomposed into several intrinsic scale components(ISC)which are in different scales by LCD.And then,the DE of each ISC was calculated and several DE value of ISC was set as feature vector.Finally,the feature vector were put into support vector machine(SVM)to diagnosis the bearing faults.Bearing different fault type and different fault degree diagnosis comparison results from vertical and horizontal show that the proposed method can improve diagnosis effect and has certain superiority when compared with some other methods.
关 键 词:局部特征尺度分解 多尺度 散布熵 特征提取 轴承
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.209