基于谱归一化条件生成对抗网络的图像修复算法  被引量:11

Image Inpainting Algorithm Based on Conditional Generative Adversarial Network with Spectral Normalization

在线阅读下载全文

作  者:雷蕾[1] 郭东恩[1,2] 靳峰 LEI Lei;GUO Dongen;JIN Feng(School of Software,Nanyang Institute of Technology,Nanyang,Henan 473000,China;Chongqing Key Laboratory of Computational Intelligence,College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)

机构地区:[1]南阳理工学院软件学院,河南南阳473000 [2]重庆邮电大学计算机科学与技术学院计算智能重庆市重点实验室,重庆400065

出  处:《计算机工程》2021年第1期230-238,共9页Computer Engineering

基  金:国家自然科学基金(61671091);重庆市自然科学基金(cstc2017jcyjBX0037,cstc2017jcyjA0982);河南省高等学校重点科研项目(19A520030);重庆市教委一般项目(CYB19173);重庆邮电大学博士创新人才项目(BYJS201812)。

摘  要:基于生成对抗网络的图像修复算法在修复大尺寸缺失图像时,存在图像失真较多与判别网络性能不可控等问题,基于谱归一化条件生成对抗网络,提出一种新的图像修复算法。引入谱归一化来约束判别网络的判别性能,间接提高修复网络的修复能力,并根据控制判别网络性能对谱归一化进行理论分析。通过类别信息约束特征生成,保证修复图像的内容不变性,引入扩展卷积算子对待修复图像进行像素级操作,解决修复图像缺乏局部一致性的问题。在此基础上,运用PSNR、SSIM等图像评价方法及分片Wasserstein距离、Inception分数、流形距离度量、GAN-train和GAN-test等流形结构相似度评价指标对修复图像进行综合评价。实验结果表明,与CE、GL等算法相比,该算法获得的修复图像在主观感受和客观评价指标上均有明显提高。To solve the problem of large image distortion and uncontrollable discriminative network performance in image inpainting based on Generative Adversarial Network(GAN),this paper proposes a new image inpainting algorithm based on conditional generative adversarial network with spectral normalization.Spectral normalization is introduced to constrain the discriminative performance of discriminative network,and thus bring an improvement to the inpainting network performance followed by detailed theoretical analysis of spectral normalization in controlling the discriminative network performance.Category information is used to constrain feature generation to ensure that content of the inpainted image is close to that of the original image.The extended convolution operator is also introduced to perform pixel-level operation on the tobe-inpainted image to address the lack of local consistency in image inpainting.On this basis,PSNR,SSIM and other image evaluation methods,as well as slice Wasserstein distance,Inception score,manifold distance measurement,GAN-train,GANtest and other manifold structure similarity evaluation indicators are used to comprehensively evaluate the inpainted image.Experimental results show that compared with CE,GL and other algorithms,the proposed algorithm can significantly improve the subjective and objective evaluation indicators of the inpainted images.

关 键 词:谱归一化 条件生成对抗网络 图像修复 判别性能 图像评价 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象