基于经验模态分解和长短期记忆神经网络的短期交通流量预测  被引量:23

Short-term traffic flow prediction based on empirical mode decomposition and long short-term memory neural network

在线阅读下载全文

作  者:张晓晗 冯爱民[1,2] ZHANG Xiaohan;FENG Aimin(College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing Jiangsu 210000,China;College of Artificial Intelligence,Nanjing University of Aeronautics and Astronautics,Nanjing Jiangsu 210000,China)

机构地区:[1]南京航空航天大学计算机科学与技术学院,南京210000 [2]南京航空航天大学人工智能学院,南京210000

出  处:《计算机应用》2021年第1期225-230,共6页journal of Computer Applications

摘  要:交通流量预测作为智能交通的重要一环,所要处理的交通数据具有非线性、周期性和随机性的特点,导致在数据预测时,不稳定的交通流量数据依赖于长期数据范围,且由于一些外部因素使得原始数常包含一些噪声,可能导致预测性能的进一步下降。针对上述问题提出了一种能够去噪且能处理长时依赖的预测算法——EMD-LSTM。首先,通过经验模态分解(EMD)算法将交通时序数据中的不同尺度分量逐级分解出来,生成一系列具有相同特征尺度的本征模函数,从而去除一定的噪声影响;然后,借助长短期记忆(LSTM)神经网络解决数据的长期依赖问题,从而使所提算法在长时间视野预测方面表现更为突出。对实际数据集进行短期预测的实验结果表明,EMD-LSTM的平均绝对误差(MAE)比LSTM低了1.91632,平均绝对百分误差(MAPE)比LSTM降低了4.64545个百分点,可见所提出的混合模型使预测准确性得到显著提高,能够有效解决交通数据的问题。Traffic flow prediction is an important part of intelligent transportation.The traffic data to be processed by it are non-linear,periodic,and random,as a result,the unstable traffic flow data depend on long-term data range during data prediction.At the same time,due to some external factors,the original data often contain some noise,which may further lead to the degradation of prediction performance.Aiming at the above problems,a prediction algorithm named EMD-LSTM that can denoise and process long-term dependence was proposed.Firstly,Empirical Mode Decomposition(EMD)was used to decompose different scale components in the traffic time series data gradually to generate a series of intrinsic mode functions with the same feature scale,thereby removing certain noise influence.Then,with the help of Long Short-Term Memory(LSTM)neural network,the problem of long-term dependence of data was solved,so that the algorithm performed more outstanding in long-term field prediction.Experimental results of short-term prediction of actual datasets show that EMD-LSTM has the Mean Absolute Error(MAE)1.91632 lower than LSTM,and the Mean Absolute Percentage Error(MAPE)4.64545 percentage points lower than LSTM.It can be seen that the proposed hybrid model significantly improves the prediction accuracy and can solve the problem of traffic data effectively.

关 键 词:交通时序数据 噪声 经验模态分解 长短期记忆神经网络 交通流量控制策略 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象