基于数据驱动的风电功率预测误差解耦评价方法  被引量:9

Data-driven Decoupling Evaluation Method of Wind Power Prediction Error

在线阅读下载全文

作  者:江长明 杨健 柳玉 崔阳[2] JIANG Changming;YANG Jian;LIU Yu;CUI Yang(North China Power Dispatching and Control Branch Center of State Grid,Beijing 100053,China;North China Electric Power Research Institute Co.,Ltd.,Beijing 100045,China)

机构地区:[1]国家电网华北电力调控分中心,北京市100053 [2]华北电力科学研究院有限责任公司,北京市100045

出  处:《电力系统自动化》2021年第1期105-113,共9页Automation of Electric Power Systems

摘  要:针对风电功率预测中多环节交互影响的复杂性,文中提出一种风电功率预测误差的精细化评价方法,旨在利用数值天气预报、气象观测数据、风电运行数据等多源异构信息,定量分析功率预测各关键环节对预测总误差的影响程度。首先,解析了风电功率预测运行机理,将预测过程分解为数值天气预报、风能-功率转换建模、预测结果校正3个关键环节。然后,设计了基于核密度估计的风电异常数据分区间辨识方法,建立了风资源-电力特性的简化模型。最后,基于气象、电力等多源运行数据驱动,提出功率预测各环节等效误差的量度方法。算例结果表明,所提方法可定量评估各环节预测对功率预测误差的影响。For the complexity of multi-link interaction in wind power prediction, this paper proposes a refined evaluation method for wind power prediction error. It aims to quantitatively analyze the effect of each key link of power prediction on the total prediction error by using numerical weather prediction, meteorological observation data, wind power operation data and other multi-source heterogeneous information. Firstly, the operation mechanism of wind power prediction is analyzed, the prediction process is divided into three key links, i.e., numerical weather prediction, wind energy-power conversion modeling and prediction result correction. Secondly, based on the kernel density estimation, the segmented identification method is designed for wind power anomaly data, and a simplified model of wind resource-power characteristics is established. Finally, based on the multisource operation data-driven in meteorology and electric power, a method for measuring equivalent error in each link of power prediction is proposed. The case results show that the proposed method can quantitatively evaluate the effects of each link on the power prediction error.

关 键 词:风电功率 功率预测 误差评价 数据驱动解耦评价 

分 类 号:TM614[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象