基于特征提取和SVM的硬件木马检测方法  被引量:6

Hardware Trojan Detection Method Based on Feature Extraction and SVM

在线阅读下载全文

作  者:高良俊 于金星 陈鑫 鲁迎春[1] 易茂祥[1] GAO Liangjun;YU Jinxing;CHEN Xin;LU Yingchun;YI Maoxiang(School of Electronic Science and Applied Physics,Hefei University of Technology,Hefei 230009,P.R.China)

机构地区:[1]合肥工业大学电子科学与应用物理学院,合肥230009

出  处:《微电子学》2020年第6期914-919,共6页Microelectronics

基  金:国家自然科学基金资助项目(61371025,61574052,61874156)。

摘  要:针对现有基于机器学习的硬件木马检测方法检测率不高的问题,提出了一种基于特征提取和支持向量机(SVM)的硬件木马检测方法。首先在门级网表的节点中提取6个与硬件木马强相关的特征,并将其作为6维特征向量。然后将这些特征向量分为训练集和测试集。最后使用SVM检测木马。将该方法应用于15个Trust-Hub基准电路,实验结果表明,该方法可实现高达93%的平均硬件木马检测率,部分基准电路的硬件木马检测率达到100%。Aiming at the problem of low detection rate of the existing hardware Trojan detection methods based on machine learning, a hardware Trojan detection method based on feature extraction and support vector machine(SVM) was proposed. First, 6 features strongly related to the hardware Trojan were extracted from the nodes in gate-level netlist and taken as 6-dimensional feature vectors for each node. Then, these feature vectors were divided into the training set and the test set. Finally, SVM was used to detect hardware Trojan. The method was applied to 15 Thrust-Hub benchmark circuits. Experimental results showed that this method could achieve an average hardware Trojan detection rate of up to 93%, and the hardware Trojan detection rate of some benchmark circuits could reach 100%.

关 键 词:硬件木马 机器学习 特征提取 支持向量机 门级网表 

分 类 号:TN407[电子电信—微电子学与固体电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象