基于滑移率辨识的汽车制动时序视觉检测方法  被引量:7

Visual detection method for vehicle braking time sequence based on slip rate identification

在线阅读下载全文

作  者:吴岛 张立斌[1] 张云翔 单洪颖 单红梅[1] WU Dao;ZHANG Li-bin;ZHANG Yun-xiang;SHAN Hong-ying;SHAN Hong-mei(College of Transportation,Jilin University,Changchun 130022,China;College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China;School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China)

机构地区:[1]吉林大学交通学院,长春130022 [2]吉林大学生物与农业工程学院,长春130022 [3]吉林大学机械与航空航天工程学院,长春130022

出  处:《吉林大学学报(工学版)》2021年第1期206-216,共11页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金项目(50775094);吉林省重点科技攻关项目(20150204025GX).

摘  要:针对现有制动性能检测方法存在的缺陷,提出了一种非接触式汽车制动时序动态检测方法。该方法以汽车制动过程中车轮滑移率变化作为切入点,根据滑移率与附着系数的关系,提出了基于滑移率的制动时序测量目标;基于双目立体视觉测量原理,建立了基于视觉的车轮滑移率测量模型;借助LM(Levenberg-Marquardt)算法对标定参数进行非线性优化,运用伪中值双边滤波、Canny边缘检测、冗余边界清除及Hough变换等图像处理技术,对图像分别进行去噪、边缘提取、精简和特征提取,得到圆形标识的中心坐标。为验证所提方法的可行性,进行了实车试验,并给出测量误差的标准不确定度评定结果。结果表明:在拓展不确定度U=2.52、置信因子k=2的条件下,本文方法最大相对误差为2.74%,重复性误差最大为3.88%。To overcome the shortcomings of existing braking performance testing methods,a non-contact dynamic testing method for vehicle braking time sequence was proposed. Based on the relationship between slip rate and adhesion coefficient,a measurement target of braking time sequence based on slip rate was put forward. Based on the measurement principle of binocular stereo vision,a measurement model for wheel slip rate based on vision was established. With the help of LM(Levenberg-Marquardt) algorithm,the calibration parameters were optimized nonlinearly. Image processing techniques such as pseudo-median bilateral filtering,Canny edge detection,redundant boundary clearance and Hough transform were used to denoise,extract edges,simplify and extract features respectively,by which the central coordinates of circular markers were obtained. To verify the feasibility of the proposed method,a real-time test was carried out and the standard uncertainty evaluation results of measurement errors were given. The results show that the maximum relative error of the proposed method was 2.74% and the maximum repeatability error was 3.88% under the conditions of U=2.52 and k=2.

关 键 词:车辆工程 半挂汽车列车 制动时序 立体视觉 LEVENBERG-MARQUARDT算法 不确定度 

分 类 号:U472.9[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象