检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邬春明[1,2] 任继红 WU Chunming;REN Jihong(Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology,Ministry of Education,Northeast Electric Power University,Jilin 132012,China;School of Electrical Engineering,Northeast Electric Power University,Jilin 132012,China)
机构地区:[1]东北电力大学现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林吉林132012 [2]东北电力大学电气工程学院,吉林吉林132012
出 处:《电力自动化设备》2021年第2期138-143,152,共7页Electric Power Automation Equipment
摘 要:深度学习在暂态稳定评估中发挥着越来越重要的作用,然而电网规模逐渐扩大导致数据出现维数灾难,这对模型的性能提出了更高的要求。目前,暂态稳定特征构建需要依靠人工经验,具有主观性;深度学习的模型在设计和训练上耗时、耗力。针对以上两点,结合极限梯度提升(XGBoost)算法和实体嵌入(EE)网络,提出了一种基于XGBoost-EE的电力系统暂态稳定评估方法。首先通过XGBoost算法的路径规则生成类别特征,将原始特征进行降维。然后采用EE网络对新的特征进行分类,从而完成快速、精准的暂态稳定评估。该方法充分利用了机器学习算法处理速度快和神经网络评估精度高的优点,能够直接面向底层量测数据。最后,在IEEE新英格兰10机39节点和IEEE 50机145节点系统的仿真结果表明,所提方法相比于其他方法具有更高的预测精度和更好的抗噪性能,且在训练时不容易过拟合。Deep learning plays an increasingly important role in transient stability evaluation.However,the increase of power system scale generally results in dimension disasters.In this case,an efficient and tractable computation model is highly desirable.Currently,the construction of transient stability features generally relies on the experience of power system operators,which is more or less subjective.However,the deep learning approach is generally time-consuming and labor-intensive in aspects of design and training.Based on the above two points,a transient stability assessment method of power system based on XGBoost-EE is developed by combining XGBoost(eXtreme Gradient Boosting)algorithm and EE(Entity Embedding)network.Firstly,the path rules of the tree are extracted and the category features are generated by XGBoost algorithm.In this way,the original features are dimensionally reduced.Then,the EE network is used to classify the new features,which provides a fast and accurate assessment.The proposed method,hence,takes full advantage of the fast processing speed of machine learning algorithms and the high accuracy of neural network evaluation.Simulative results based on IEEE New England 10-machine 39-bus system and IEEE 50-machine 145-bus system show that the proposed method exhibits higher prediction accuracy and better anti-noise performance than other approaches.Additionally,the proposed method is not easy to become over-fit during the training process.
关 键 词:XGBoost算法 实体嵌入 暂态稳定评估 深度学习 大数据
分 类 号:TM712[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117