检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢泽奇 张会敏 XIE Zeqi;ZHANG Huimin(School of Electronic and Information Engineering,Zhengzhou Sias University,Zhengzhou 451150,China)
机构地区:[1]郑州西亚斯学院电子信息工程学院,河南郑州451150
出 处:《现代电子技术》2021年第4期107-110,共4页Modern Electronics Technique
基 金:国家自然科学基金项目(61473237);河南省高等学校青年骨干教师培养计划项目(2018GGJS200);科技厅重点研发与推广专项(科技攻关)项目(182102210545);科技厅重点研发与推广专项(科技攻关)项目(192102210289);河南省高等学校重点科研项目计划支持(20A520045)。
摘 要:针对人工预测农作物病害的方法存在效率低、误差大的弊端,提出一种基于深度学习的农作物病害预测方法。首先采用基于改进深度学习的特征提取算法,提取农作物特征;基于提取的农作物特征,再通过基于粒子群支持向量机状态识别的农作物病害识别模型,实现农作物病害预测。实验结果表明:所提方法对农作物特征提取耗时最大值为54.76 ms,提取精度最大值为0.983;对同一农作物不同病害预测精度高达0.94,对不同农作物的同一病害、不同农作物差异病害的预测误差值均为0.02。某农科院采用该方法对马铃薯病害进行预测后,预测效果的满意态度达到100%,由此验证所提方法对农作物病害预测具有一定应用价值,预测性能显著。In allusion to the disadvantages of low efficiency and large error in the artificial prediction of crop diseases,a method of crop disease detection based on deep learning is proposed.The feature extraction algorithm based on improved deep learning is used to extract the features of crops.Based on the extracted crops features,the crop disease recognition model based on the state recognition of particle swarm support vector machine is used to realize the prediction of crop diseases.The experimental results show that the maximum time⁃consumption and maximum extraction precision value of the proposed method is 54.76 ms and 0.983 respectively,the prediction precision of different diseases of the same crop is as high as 0.94,and the prediction error of the same disease and different diseases of different crops is 0.02.After a certain academy of agricultural sciences used this method to predict potato diseases,the satisfactory attitude of prediction effect reaches 100%,which verifies that the proposed method has a certain application value for crop disease prediction,and the prediction performance is significant.
关 键 词:农作物 病害预测 深度学习 特征提取 状态识别 实验验证
分 类 号:TN911.23-34[电子电信—通信与信息系统] TP391.4[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200