检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:申远 杨文柱 周杨 SHEN Yuan;YANG Wen-zhu;ZHOU Yang(School of Cyber Security and Computer,Hebei University,Baoding 071002,China)
机构地区:[1]河北大学网络空间安全与计算机学院,河北保定071002
出 处:《计算机工程与设计》2021年第2期419-425,共7页Computer Engineering and Design
基 金:河北省自然科学基金项目(F201701069)。
摘 要:为提高相关滤波类算法的性能,提出一种基于通道选择与目标重检的跟踪算法。通过计算每个卷积通道的特征均值和方差,选取符合条件的通道训练滤波器;根据滤波响应均值找出跟踪失败的帧,扩大搜索范围后使用最优模板再次检测丢失的目标位置;通过调整搜索框的比例来训练尺度滤波器,使用平均峰值相关能量约束模板更新。实验结果表明,所提算法的准确率相较于其它算法有明显提高,有效解决了跟踪过程中的形变、遮挡和尺度变化等问题。To improve the accuracy and success rate of kernel correlation filter-based algorithms,a tracking algorithm based on channel selection and target re-detection was proposed.By calculating the feature mean and variance of each convolution channel,a channel that met the criteria to train the filter was selected.The track failed frames were found out based on the response mean value,and the optimal template was used to detect the object location again after expanding the searching range.The ratio of the searching box was adjusted to train the location filter.The template updating was restrained using mean peak value correlation energy.Experimental results show that the accuracy of the proposed algorithm is significantly improved compared to that of ot-her algorithms,and it effectively solves the problems of deformation,occlusion,and scale changes in the tracking process.
关 键 词:目标跟踪 通道选择 目标重检 卷积特征 相关滤波
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.226