精确华林不等式的一个推广  

An extension of the sharp Wirtinger inequality

在线阅读下载全文

作  者:齐宗会[1] 汪晖 刘永平[3] QI Zonghui;WANG Hui;LIU Yongping(Boustead College,TianJin Commerce University,300384,Tianjin,China;Department of Mathematics,Tianjin Normal University,300387,Tianjin,China;Department of Mathematics,Beijing Normal University,100875,Beijing,China)

机构地区:[1]天津商业大学宝德学院,天津300384 [2]天津师范大学数学科学学院,天津300387 [3]北京师范大学数学科学学院,北京100875

出  处:《北京师范大学学报(自然科学版)》2020年第6期763-770,共8页Journal of Beijing Normal University(Natural Science)

基  金:国家自然科学基金资助项目(11871006)。

摘  要:给出了一类精确的华林不等式:设a≤x1<x2<…<xr≤b,则对任给满足条件f(x1)=f(x2)=…=f(xr)=0的函数f∈Wq^(r)[a,b],有||f||_(p)≤C(p,q)(b-a)^(r+1/p-1/q)||f^((r))||_(q),1≤p,q≤∞.首先,基于拉格朗日插值的积分型余项公式,将C(p,q)的计算转化为一个积分算子的范数;其次,将C(1,1)和C(∞,∞)的值转化为2个显式积分表达式,并将C(2,2)的值转化为计算一个希尔伯特-施密特算子的最大特征值;最后,用一个例子说明.In this study,we give a sharp Wirtinger inequality||f||_(p)≤C(p,q)(b-a)^(r+1/p-1/q)||f^((r))||_(q),1≤p,q≤∞.For an arbitrary f∈Wq^(r)[a,b]with f(x1)=f(x2)=…=f(xr)=0,a≤x1<x2<…<xr≤b.From integral type remainder of Lagrange interpolation,we refer computation of C(p,q)to the norm of an integral operator.We refer values of C(1,1)and C(∞,∞)to two explicit integral expressions and value of C(2,2)to computation of maximum eigenvalue of a Hilbert-Schmidt operator.An example was then given to show our method.

关 键 词:拉格朗日插值 L_(p)-范数 特征值 华林不等式 

分 类 号:O174.22[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象