考虑未知输入的主动悬架路面高程与等级识别研究  被引量:5

Research on Road Elevation and Grade Identification of Active Suspension Considering Unknown Inputs

在线阅读下载全文

作  者:丁仁凯[1] 蒋俞 汪若尘[2] 刘伟[2] 孟祥鹏[1] 孙泽宇[2] Ding Renkai;Jiang Yu;Wang Ruochen;Liu Wei;Meng Xiangpeng;Sun Zeyu(Automotive Engineering Research Institute,Jiangsu University,Zhenjiang 212013;School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013)

机构地区:[1]江苏大学汽车工程研究院,镇江212013 [2]江苏大学汽车与交通工程学院,镇江212013

出  处:《汽车工程》2021年第2期278-286,共9页Automotive Engineering

基  金:国家自然科学基金(51975253)资助。

摘  要:通过主动悬架的精确控制提高车辆乘坐舒适性与行驶安全性的基本前提是进行路面高程与等级识别。本文中设计了考虑未知输入的卡尔曼观测器,以获取路面高程信息;根据路面高程建立AR模型,得到路面功率谱密度,并求取兴趣频段内路面功率谱密度均方根值,实现了路面的等级分类。仿真分析了不同工况下路面高程估计方法和路面等级分类方法的准确性,并搭建了试验台架,验证了所提出路面高程估计方法和路面等级分类方法的有效性,为主动悬架的智能控制提供了必要条件。The basic premise of improving the ride comfort and driving safety of vehicles via the precise control of active suspension is road elevation and grade identification.In this paper,a Kalman observer considering unknown inputs is designed to obtain the road elevation information.The AR model is established to acquire the road power spectral density,and the root mean square value of the road power spectral density in the interest fre⁃quency band is computed to realize the road grade classification.The accuracy of road elevation estimation and road grade classification under different working conditions is analyzed by simulation.Finally,the test bench is built to verify the effectiveness of the proposed road elevation estimation and road grade classification method,which pro⁃vides necessary conditions for the intelligent control of active suspension.

关 键 词:主动悬架 未知输入 卡尔曼观测器 路面高程估计 路面等级分类 

分 类 号:U463.33[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象