检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘石雨 王多琎 LIU Shi-yu;WANG Duo-jin(Institute of Rehabilitation Engineering and Technology,University of Shanghai for Science and Technology;Shanghai Engineering Research Center of Assistive Devices;Key Laboratory of Neural-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs,Shanghai 200093,China)
机构地区:[1]上海理工大学康复工程与技术研究所 [2]上海康复器械工程技术研究中心 [3]民政部神经功能信息与康复工程重点实验室,上海200093
出 处:《软件导刊》2021年第2期165-169,共5页Software Guide
基 金:上海市科技创新行动计划项目(19DZ2203600)。
摘 要:跌倒已逐渐成为一种危害老年人身体健康的严重事故,如何在跌倒前对跌倒作出预测具有重要意义。设计一种基于足底压力和惯性传感器的跌倒检测系统,系统位于鞋体外侧,同时设计一种三层BP神经网络作为检测算法,系统运行时采集传感数据并通过WiFi传给上位机,上位机对数据进行显示,特征处理后使用训练好的算法进行跌倒检测。实验结果表明,该系统对跌倒和日常活动(ADL)的准确度达99.7%,算法的敏感度和特异性分别为100%和99.3%,同时,检测系统的PIT值约为400ms。该系统在保证高准确率的同时,还实现了很高的PIT值,给跌倒后续处理保留了较长前置时间。Falls have gradually become a serious accident endangering the health of the elderly.How to predict falls before they happen is of great significance.A fall detection system based on plantar pressure and inertial sensor is designed in this paper.The system is located on the outside of the shoe,and a detection algorithm based on three-layer BP neural network is designed.When the system is running,the sensor data is collected and transmitted to the upper computer via WIFI.The upper computer displays the data,and the trained algorithm is used for fall detection after feature processing.The experimental results show that the accuracy of the system for falls and daily activities(ADL)can reach 99.7%,the sensitivity and specificity of the algorithm are 100%and 99.3%,respectively.Meanwhile,the PIT value is about 400ms.the system not only ensures high accuracy,but also realizes extraordinarily high PIT value,which reserves a long lead time for subsequent treatment of falls.
关 键 词:跌倒检测 足底压力 加速度 角速度 BP神经网络
分 类 号:TP319[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200