检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田智慧[1,2] 马占宇 魏海涛[2] TIAN Zhihui;MA Zhanyu;WEI Haitao(College of Information Engineering,Zhengzhou University,Zhengzhou 450001,China;College of Earth Science and Technology,Zhengzhou University,Zhengzhou 450052,China)
机构地区:[1]郑州大学信息工程学院,郑州450001 [2]郑州大学地球科学与技术学院,郑州450052
出 处:《计算机工程》2021年第2期133-138,共6页Computer Engineering
基 金:河南省重点研发与推广专项(科技攻关)(192102210124)。
摘 要:目前常见的轨迹聚类大多基于OPTICS、DBSCAN和K-means等算法,但这些聚类方法的时间复杂度随着轨迹数量的增加会大幅上升。针对该问题,提出一种基于密度核心的轨迹聚类算法。通过引入密度核心的概念,设计轨迹密度计算函数以获取聚类簇的致密核心轨迹,同时利用出租车载客轨迹自身的方向和速度等属性提取轨迹特征点,减少轨迹数据量。在此基础上,根据聚类簇中致密核心轨迹与参与聚类轨迹的相似度距离判断轨迹的匹配程度,进而聚合相似轨迹,并将聚类结果储存在聚类节点中。实验结果表明,与TRACLUS和OPTICS聚类算法相比,该算法能够得到更准确的聚类效果,并且时间效率更高。The existing trajectory clustering methods are mostly based on OPTICS,DBSCAN,and K-means clustering algorithms,etc.,but their time complexity soars with the increase of the number of trajectories.To address the problem,this paper proposes a trajectory clustering algorithm based on density core.By introducing the concept of density core,a trajectory density calculation function is designed to obtain the dense core trajectory of the cluster.At the same time,the attributes of the taxi passenger trajectory,including the direction and speed,are used to extract the trajectory feature points to reduce the amount of trajectory data.Then based on the similarity distance between the dense core trajectories in the cluster and the participating clustering trajectories,the matching degree of the trajectories is judged,and then similar trajectories are aggregated.The clustering results are stored in the cluster nodes.Experimental results show that the proposed algorithm is more accurate and efficient than TRACLUS,OPTICS and other clustering algorithms.
关 键 词:DBSCAN算法 特征点 密度核心 相似度距离 轨迹聚类
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.8