检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁元辉 吴清乐 曹立佳 LIANG Yuan-hui;WU Qing-le;CAO Li-jia(School of Automation and Information Engineering,Sichuan University of Science&Engineering,Yibin 644005,China;Key Laboratory of Artificial Intelligence of Sichuan,Sichuan University of Science&Engineering,Yibin 644005,China)
机构地区:[1]四川轻化工大学自动化与信息工程学院,四川宜宾644005 [2]四川轻化工大学人工智能四川省重点实验室,四川宜宾644005
出 处:《计算机技术与发展》2021年第2期97-100,共4页Computer Technology and Development
基 金:四川省重大科技专项项目(2018GZDZX0046);自贡市科技计划重点项目(2019YYJC03)。
摘 要:疲劳驾驶检测算法研究对提升交通安全有着重要的意义。目前,已有大量关于疲劳驾驶的文献和成果。在疲劳驾驶检测算法中,眼睛开闭状态的判断起着至关重要的作用。深度级联卷积神经网络用来检测人脸和人脸特征,利用Dlib工具快速提取驾驶员人脸特征。基于眼睛特征计算眼睛宽高比,并将眼睛宽高比、传统人眼特征的人眼虹膜等用于判断眼睛开闭的参数。该文提出一种实时地融合了EAR、虹膜等多个特征的眼睛状态检测算法,可补偿传统人眼特征的像素值比较敏感的不足,也补偿了EAR在人脸倾斜、戴眼镜、光照变换、眼睛周围有光斑等情况下非常不可靠的不足。在640*480分辨率,帧率30 fps的视频上获得平均92%的检测正确率。实验结果表明融合后的算法可在光照变换、人脸倾斜、佩戴眼镜等条件下提升检测性能,鲁棒性较高。The research about driving drowsiness detection algorithm is of great significance to improve traffic safety.Presently,there are many literatures and achievements about driving drowsiness.In driving drowsiness detection algorithm,the judgment of eye state plays an important role.A deep cascaded convolutional neural network to detect faces and face features,and Dlib tool to quickly extract drivers’face features.Eye aspect ratio(EAR)and pupil are used to detect eye stature.We propose a real-time eye state detection algorithm that integrates EAR,pupil and other features,which can compensate for the lack of relatively sensitive pixel value of traditional human eye features and compensate for the unreliability of EAR in face tilt,glasses wearing,light transformation,light spots around the eyes and other situations.The average detection accuracy is 92% in 640*480 resolution and 30 fps video.The experiment shows that the proposed algorithm can improve the detection accuracy especially in light transformation,face tilt,glasses wearing,etc.,with high robustness.
关 键 词:眼睛状态监测 疲劳驾驶 多特征融合 PERCLOS EAR
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222