检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:江辉[1] 刘通 陈全胜[2] JIANG Hui;LIU Tong;CHEN Quansheng(School of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China;School of Food and Biological Engineering,Jiangsu University,Zhenjiang 212013,China)
机构地区:[1]江苏大学电气信息工程学院,镇江212013 [2]江苏大学食品与生物工程学院,镇江212013
出 处:《农业机械学报》2021年第2期340-345,共6页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家重点研发计划项目(2017YFC1600603);江苏省“六大人才高峰”项目(NY151)。
摘 要:提出了一种基于比色传感器数据和近红外光谱特征融合的储藏期面粉脂肪酸值的定量检测方法。开发比色传感器阵列、搭建便携式近红外光谱测量系统,分别采集不同储藏期面粉样本的比色传感器数据和近红外光谱。利用主成分分析分别对预处理后的比色传感器数据和近红外光谱数据进行特征降维,采用五折交互验证法在反向传播神经网络(BPNN)模型校正过程中进行优化,确定基于单技术分析模型的最佳主成分(PCs)个数。将优化后的基于单技术模型的最佳PCs在特征层进行融合,建立基于融合特征的BPNN分析模型,以实现对面粉储藏过程中脂肪酸值的快速检测。实验结果显示,基于比色传感器特征和基于近红外光谱特征建立的最佳BPNN模型的最佳PCs数量分别为3和4,基于融合特征建立的BPNN模型在预测集中的相关系数和预测均方根误差的均值分别为0.9276和1.9345 mg/(100 g)。研究表明,与单技术数据分析模型相比,基于比色传感器数据和近红外光谱特征融合模型的检测精度和泛化性能都有所提高。本研究可为粮食储藏品质的高精度原位监测提供一种技术方法。A novel quantitative detection method for the fatty acid value of flour during storage was innovatively proposed based on the feature fusion of colorimetric sensor data and near-infrared spectra.A colorimetric sensor array was developed to collect colorimetric sensor data of flour samples in different storage periods.A portable near-infrared spectroscopy system was built to collect near-infrared spectra of flour samples in different storage periods.Principal component analysis was used to perform feature reduction on the preprocessed colorimetric sensor data and near-infrared spectra.In the back propagation neural network(BPNN)model calibration,the five-fold cross-validation method was used to optimize and determine the best principal components(PCs)of the single technique analysis model.The optimized PCs based on the single technique model were fused in the feature layer,and a BPNN analysis model based on the fusion feature was established to realize the rapid detection of the fatty acid value during the flour storage.Experimental results showed that the number of PCs in the best BPNN model based on the characteristics of the colorimetric sensor and the near-infrared spectra were three and four,respectively.The average values of correlation coefficient and root mean square error of prediction of the BPNN model based on the fusion features in the prediction set were 0.9276 and 1.9345 mg/(100 g),respectively.The overall results showed that compared with the single technique data analysis model,the detection accuracy and generalization performance of the colorimetric sensor data and the near-infrared spectral feature fusion model were improved.The results can provide a new technical method for high-precision in-situ monitoring of grain storage quality.
关 键 词:面粉 脂肪酸值 比色传感器 便携式近红外光谱系统 特征融合 定量检测
分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30