检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨一帆 贺国先[1] 李永定 YANG Yi-fan;HE Guo-xian;LI Yong-ding(School of Transportation,Lanzhou Jiaotong University,Lanzhou 730070,China)
机构地区:[1]兰州交通大学交通运输学院,甘肃兰州730070
出 处:《电脑知识与技术》2021年第5期252-255,共4页Computer Knowledge and Technology
摘 要:K-means算法的聚类效果与初始聚类中心的选择以及数据中的孤立点有很大关联,具有很强的不确定性。针对这个缺点,提出了一种优化初始聚类中心选择的K-means算法。该算法考虑数据集的分布情况,将样本点分为孤立点、低密度点和核心点,之后剔除孤立点与低密度点,在核心点中选取初始聚类中心,孤立点不参与聚类过程中各类样本均值的计算。按照距离最近原则将孤立点分配到相应类中完成整个算法。实验结果表明,改进的K-means算法能提高聚类的准确率,减少迭代次数,得到更好的聚类结果。The clustering effect of K-means algorithm is closely related to the selection of initial clustering center and the isolated points in the data,so it has strong uncertainty.In order to solve this problem,a novel K-means algorithm based on nearest neighbor density is proposed.In this algorithm,considering the distribution of the data set,the sample points are divided into isolated points,low density points and core points,and then the isolated points and low density points are eliminated,and the initial clustering cen⁃ter is selected in the core points.Isolated points do not participate in the calculation of the mean value of all kinds of samples in the process of clustering.The outlier is assigned to the corresponding class according to the nearest principle to complete the whole al⁃gorithm.The experimental results show that the improved K-means algorithm can improve the clustering accuracy,reduce the num⁃ber of iterations,and get better clustering results.
关 键 词:聚类 K-MEANS 最近邻点密度 初始聚类中心 孤立点
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.237.71