检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白伟华 张传斌 张塽旖 周腾 Bai Weihua;Zhang Chuanbin;Zhang Shuangyi;Zhou Teng(School of Computer Science&Software,School of Big Data,Zhaoqing University,Zhaoqing Guangdong 526061,China;Dept.of Computer Science,Shantou University,Shantou Guangdong 515063,China)
机构地区:[1]肇庆学院计算机科学与软件学院、大数据学院,广东肇庆526061 [2]汕头大学计算机系,广东汕头515063
出 处:《计算机应用研究》2021年第3期817-821,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(61902232);广东省自然科学基金资助项目(2018A030313291);广东省教育科学规划项目(2018GXJK048,2019KTSCX199);广东大学生科技创新培育专项资金资助项目(pdjh2020b0222);肇庆市科技专项资金项目(2020G1004);肇庆学院校级科研项目(2019012612,zlgc201933)。
摘 要:针对智慧交通的需求提出了一种新颖有效的短时交通流预测方法,通过异常值识别扩展了卡尔曼滤波,使其能对噪声进行识别和过滤——异常值识别卡尔曼滤波器。利用卡尔曼滤波能有效地过滤导致系统不确定性的交通流波动,但这可能会使指示交通流突变的细微线索丢失,为了提升预测精度,应用离散小波变换对原始信号进行识别处理,在去掉异常值的同时保留原有对预测有效的信号源信息,此外还使用了历史参考值对预测值进行修正。在四个基准数据集上的大量实验表明,与常用及最新的预测模型相比,其结果MAPE平均降低了2.919%,RMSE平均降低了79.582。This paper presented a novel and effective technique for short-term traffic flow forecasting.The main contribution was an extension of Kalman filter,such that it became to be able to identify the outlier and then filter out it,which was named as outlier-identified Kalman filter.It used the classic Kalman filter to filter out the fluctuations of the traffic flow which led the system uncertainty,and the subtle clues indicating the sudden change of the traffic flow might lose in this operation.To achieve better forecasting accuracy,it used discrete wavelet transform to process the original signal and preserved the useful signals while de-noising.In addition,it applied historical reference values to correct predicted values.Extensive experiments on four benchmark datasets demonstrate an average improvement of 2.919%in MAPE and 79.58 in RMSE.
关 键 词:卡尔曼滤波 有源噪声控制 短时交通流预测 状态向量
分 类 号:TP273.5[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249