检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王建中[1] 张驰逸 孙庸 WANG Jianzhong;ZHANG Chiyi;SUN Yong(School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China)
出 处:《北京理工大学学报》2021年第2期169-176,共8页Transactions of Beijing Institute of Technology
基 金:国家部委基础科研计划资助项目(JCKY2019602C015)。
摘 要:为解决目标跟踪过程中快速运动模糊、背景相似干扰、目标状态变化等问题,基于孪生网络跟踪算法,提出三联区域候选神经网络(TripleRPN)算法与跟踪区域自适应策略(TAA)相融合的目标跟踪方法(TAA+TripleRPN).三联区域候选神经网络根据当前跟踪结果实时更新网络匹配模板,提高了跟踪器对目标状态变化的敏感性.通过区域自适应策略,根据区域候选回归网络分类分支的得分在网络的两组输出间择优选择,提高算法长时跟踪的鲁棒性.针对背景相似干扰和目标状态变化的问题时,TAA+TripleRPN跟踪器能达到更好的跟踪性能.在OTB2015数据集上,算法的AUC达到66.31%,CLE达到88.28%.在实际场景中实现验证与应用,跟踪效果良好.In order to solve the problems of fast motion blur,background similar interference and target state change in the process of target tracking,a target tracking method(TAA+TripleRPN)that combines the triple area candidate neural network(tripleRPN)algorithm with the tracking area adaptive strategy(TAA)was proposed based on siamese network tracking algorithm.The triple-area candidate neural network updates the network matching template in real time based on the current tracking results,which improves the sensitivity of the tracker to changes in the target state.Through the regional adaptive strategy,based on the scores of the classification candidates of the regional candidate regression network,the two groups of network outputs are selected optimally,which improves the robustness of the algorithm’s long-term tracking.For the problems of similar background interferences and target state changes,the TAA+TripleRPN tracker can achieve better tracking performance.On the OTB2015 dataset,the algorithm has an AUC of 66.31%and a CLE of 88.28%.The verification and application are implemented in actual scenarios,and the tracking effect is good.
关 键 词:目标跟踪 深度学习 三联区域候选回归神经网络
分 类 号:TP23[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.172.13