检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨文强[1,2] 吴文渊 Wenqiang Yang;Wenyuan Wu
机构地区:[1]中国科学院重庆绿色智能技术研究院自动推理与认知重庆市重点实验室,重庆400714 [2]中国科学院大学重庆学院,重庆400714
出 处:《中国科学:数学》2021年第1期239-256,共18页Scientia Sinica:Mathematica
基 金:中国科学院前沿科学重点项目(批准号:QYZDB-SSW-SYS026);重庆市科技创新引导专项(批准号:cstc2018jcyj-yszxX0002);国家自然科学基金(批准号:11671377和11771421);中国科学院“西部之光”资助项目。
摘 要:线性常微分方程初值问题求解在许多应用中起着重要作用.目前,已存在很多的数值方法和求解器用于计算离散网格点上的近似解,但很少有对全局误差(global error)进行估计和优化的方法.本文首先通过将离散数值解插值成为可微函数用来定义方程的残差;再给出残差与近似解的关系定理并推导出全局误差的上界;然后以最小化残差的二范数为目标将方程求解问题转化为优化求解问题;最后通过分析导出矩阵的结构,提出利用共轭梯度法对其进行求解.之后将该方法应用于滤波电路和汽车悬架系统等实际问题.实验分析表明,本文估计方法对线性常微分方程的初值问题的全局误差具有比较好的估计效果,优化求解方法能够在不增加网格点的情形下求解出线性常微分方程在插值解空间中的全局最优解.Solving initial value problems(IVPs)for linear ordinary differential equations(ODEs)plays an important role in many applications.There are various numerical methods and solvers to obtain approximate solutions typically represented by points.However,few works about estimation of global errors can be found in literature.In this paper,we first use Hermite cubic spline interpolation at mesh points to represent the solution,and then we define this residual obtained by substituting the interpolation solution back to ODEs.Then the global error between the exact solution and an approximate solution can be bounded by using the residual.Moreover,solving ODEs can be reduced to an optimization problem of the residual in certain solution space which can be solved by the conjugate gradient method by taking advantage of sparsity of the corresponding matrix.The examples in the paper show that our estimation works well for linear ODE models and the refinement can find solutions with smaller global errors than some popular methods in MATLAB without additional mesh points.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222