检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨戈[1,2] 叶杰强 YANG Ge;YE Jie-Qiang(Key Laboratory of Intelligent Multimedia Technology,Beijing Normal University,Zhuhai,Zhuhai 519087,China;Engineering Lab on Intelligent Perception for Internet of Things(ELIP),Shenzhen Graduate School,Peking University,Shenzhen 518055,China)
机构地区:[1]北京师范大学珠海分校智能多媒体技术重点实验室,珠海519087 [2]北京大学深圳研究生院深圳物联网智能感知技术工程实验室,深圳518055
出 处:《计算机系统应用》2021年第3期227-233,共7页Computer Systems & Applications
基 金:国家自然科学基金(61272364);广东高校省级重大科研项目(2018KTSCX288,2019KZDXM015,2020ZDZX3058);广东省学科建设专项资金(2013WYXM0122);智能多媒体技术重点实验室(201762005)。
摘 要:为了更好的挖掘局部特征,提升行人再识别的精度,本文提出了一种利用水平池化提取局部特征的HPLF(Horizontal Pooling for Local Feature)算法,在ResNet-50网络中对输入的联合数据集进行预处理,提取特征,对ResNet-50网络生成的特征图进行水平切割,通过分割的特征图计算两两特征之间的距离,再用难样本三元组损失(Triplet loss with Hard example mining, TriHard loss)来作为局部特征损失函数训练,通过特征图计算全局距离,通过难样本三元组损失来训练,将这两个损失函数加上一个Softmax交叉熵损失函数,联合起来作为总的损失函数进行参数修正.实验结果表明:在Market1501数据集中, mAP (mean Average Precision), Rank-1, Rank-5, Rank-10等性能指标上, HPLF算法比其他算法有3%左右的提升.Pedestrian re-identification generally considered as a sub-problem of image retrieval. Due to the distance between the camera and the pedestrian, the definition of the pedestrian photo is generally fuzzy, and the camera’s view angle of pedestrians is fixed, so it is not enough to recognize pedestrians by faces. In order to better mine strong local features and improve the accuracy of pedestrian re-identification, this study proposes an algorithm, namely Horizontal Pooling for Local Feature(HPLF). We preprocess the input joint data set in ResNet-50 network, extract features, and horizontally cut the feature map generated by ResNet-50 network, with which we calculate the distance between every two features. Triple loss with hard example mining(TriHard loss) is used for training as a local feature loss function.The global distance is calculated according to the feature map and trained through TriHard loss. The two loss functions plus a Softmax cross entropy loss function are combined as the total loss function for parameter correction. The experimental results show that HPLF’s performances of mean Average Precision(mAP), Rank-1, Rank-5, and Rank-10 in the Market1501 data set are about 3% higher than those of other algorithms.
关 键 词:深度学习 计算机视觉 行人再识别 卷积神经网络 生成对抗网络
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.202.164